subashdvorak commited on
Commit
b27faf2
·
verified ·
1 Parent(s): a541d46

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -11
app.py CHANGED
@@ -37,17 +37,10 @@ def generate_graphs(new_story):
37
  # Find the indices of the 5 most similar stories
38
  top_5_indices = np.argsort(similarities[0])[::-1][:5] # Sort similarities and get top 5
39
 
40
- # Retrieve the LikesCount for the top 5 most similar stories
41
- likes_distribution = encoded_df.iloc[top_5_indices]['likesCount'].values
42
- # sorted_likes_distribution = sorted(likes_distribution, reverse=True)
43
-
44
- # Create a bar graph for the distribution of the 5 most similar stories
45
- plt.figure(figsize=(10, 6))
46
- sns.barplot(x=[f"Story {i+1}" for i in range(5)], y=likes_distribution, palette="viridis")
47
- plt.title("LikesCount Distribution for the 5 Most Similar Stories", fontsize=14)
48
- plt.xlabel("Story Similarity (Most Similar to Least)", fontsize=12)
49
- plt.ylabel("LikesCount", fontsize=12)
50
- likes_dist_plot = plt.gcf()
51
 
52
  # Plot the similarity distribution for the 5 most similar stories
53
  plt.figure(figsize=(10, 6))
@@ -62,6 +55,17 @@ def generate_graphs(new_story):
62
  plt.ylabel("Density", fontsize=12)
63
  plt.legend(title="Stories")
64
  sim_dist_plot = plt.gcf()
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  return sim_dist_plot,likes_dist_plot
67
 
 
37
  # Find the indices of the 5 most similar stories
38
  top_5_indices = np.argsort(similarities[0])[::-1][:5] # Sort similarities and get top 5
39
 
40
+ likes_distribution=[]
41
+ for i in top_5_indices:
42
+ print(f"Row {i+1}: Similarity = {similarities[0][i]:.4f}, LikesCount = {encoded_df.iloc[i]['likesCount']}")
43
+ likes_distribution.append(encoded_df.iloc[i]['likesCount'].astype(int))
 
 
 
 
 
 
 
44
 
45
  # Plot the similarity distribution for the 5 most similar stories
46
  plt.figure(figsize=(10, 6))
 
55
  plt.ylabel("Density", fontsize=12)
56
  plt.legend(title="Stories")
57
  sim_dist_plot = plt.gcf()
58
+
59
+ # Create a bar graph for the distribution of the 5 most similar stories
60
+ # top_5_stories = [0,1,2,3,4]
61
+ plt.figure(figsize=(10, 6))
62
+ sns.barplot(x=[f"Story {i+1}" for i in range(5)], y=likes_distribution, palette="viridis")
63
+ plt.title("LikesCount Distribution for the 5 Most Similar Stories", fontsize=14)
64
+ plt.xlabel("Story Similarity (Most Similar to Least)", fontsize=12)
65
+ plt.ylabel("LikesCount", fontsize=12)
66
+ likes_dist_plot = plt.gcf()
67
+
68
+
69
 
70
  return sim_dist_plot,likes_dist_plot
71