Durganihantri's picture
Create app.py
856e073 verified
raw
history blame
2.12 kB
import streamlit as st
import nltk
import spacy
import matplotlib.pyplot as plt
from transformers import pipeline
import random
# Load NLP models
nltk.download("vader_lexicon")
from nltk.sentiment import SentimentIntensityAnalyzer
sia = SentimentIntensityAnalyzer()
nlp = spacy.load("en_core_web_sm")
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
# Sample texts
sample_texts = [
"The digital world is transforming the way we read and engage with text.",
"Reading is an essential skill that shapes our understanding of the world.",
"AI-driven education tools can personalize the learning experience for students."
]
# Streamlit UI
st.title("πŸ“– AI-Powered Adaptive Reading Engagement")
st.write("Analyze how users engage with digital reading using AI-powered insights.")
# Text Input
text_option = st.selectbox("Choose a sample text or enter your own:", ["Use Sample"] + sample_texts)
if text_option == "Use Sample":
text = st.text_area("Read this passage:", random.choice(sample_texts), height=150)
else:
text = st.text_area("Enter your own text:", height=150)
# Sentiment Analysis
if st.button("Analyze Engagement"):
if text:
sentiment_score = sia.polarity_scores(text)
emotion_results = emotion_pipeline(text)
# Display Sentiment
st.subheader("πŸ“Š Sentiment Analysis")
st.write(f"Positive: {sentiment_score['pos'] * 100:.2f}%, Negative: {sentiment_score['neg'] * 100:.2f}%, Neutral: {sentiment_score['neu'] * 100:.2f}%")
# Display Emotion
st.subheader("🎭 Emotion Detection")
top_emotion = max(emotion_results[0], key=lambda x: x['score'])
st.write(f"Detected Emotion: **{top_emotion['label']}** (Confidence: {top_emotion['score']:.2f})")
# Visualization
labels = [e['label'] for e in emotion_results[0]]
scores = [e['score'] for e in emotion_results[0]]
fig, ax = plt.subplots()
ax.bar(labels, scores)
st.pyplot(fig)
else:
st.warning("Please enter a text to analyze.")