Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import nltk
|
3 |
+
import spacy
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from transformers import pipeline
|
6 |
+
import random
|
7 |
+
|
8 |
+
# Load NLP models
|
9 |
+
nltk.download("vader_lexicon")
|
10 |
+
from nltk.sentiment import SentimentIntensityAnalyzer
|
11 |
+
sia = SentimentIntensityAnalyzer()
|
12 |
+
|
13 |
+
nlp = spacy.load("en_core_web_sm")
|
14 |
+
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
15 |
+
|
16 |
+
# Sample texts
|
17 |
+
sample_texts = [
|
18 |
+
"The digital world is transforming the way we read and engage with text.",
|
19 |
+
"Reading is an essential skill that shapes our understanding of the world.",
|
20 |
+
"AI-driven education tools can personalize the learning experience for students."
|
21 |
+
]
|
22 |
+
|
23 |
+
# Streamlit UI
|
24 |
+
st.title("π AI-Powered Adaptive Reading Engagement")
|
25 |
+
st.write("Analyze how users engage with digital reading using AI-powered insights.")
|
26 |
+
|
27 |
+
# Text Input
|
28 |
+
text_option = st.selectbox("Choose a sample text or enter your own:", ["Use Sample"] + sample_texts)
|
29 |
+
if text_option == "Use Sample":
|
30 |
+
text = st.text_area("Read this passage:", random.choice(sample_texts), height=150)
|
31 |
+
else:
|
32 |
+
text = st.text_area("Enter your own text:", height=150)
|
33 |
+
|
34 |
+
# Sentiment Analysis
|
35 |
+
if st.button("Analyze Engagement"):
|
36 |
+
if text:
|
37 |
+
sentiment_score = sia.polarity_scores(text)
|
38 |
+
emotion_results = emotion_pipeline(text)
|
39 |
+
|
40 |
+
# Display Sentiment
|
41 |
+
st.subheader("π Sentiment Analysis")
|
42 |
+
st.write(f"Positive: {sentiment_score['pos'] * 100:.2f}%, Negative: {sentiment_score['neg'] * 100:.2f}%, Neutral: {sentiment_score['neu'] * 100:.2f}%")
|
43 |
+
|
44 |
+
# Display Emotion
|
45 |
+
st.subheader("π Emotion Detection")
|
46 |
+
top_emotion = max(emotion_results[0], key=lambda x: x['score'])
|
47 |
+
st.write(f"Detected Emotion: **{top_emotion['label']}** (Confidence: {top_emotion['score']:.2f})")
|
48 |
+
|
49 |
+
# Visualization
|
50 |
+
labels = [e['label'] for e in emotion_results[0]]
|
51 |
+
scores = [e['score'] for e in emotion_results[0]]
|
52 |
+
fig, ax = plt.subplots()
|
53 |
+
ax.bar(labels, scores)
|
54 |
+
st.pyplot(fig)
|
55 |
+
else:
|
56 |
+
st.warning("Please enter a text to analyze.")
|