Spaces:
Sleeping
Sleeping
File size: 6,150 Bytes
856e073 1eb01dd 856e073 30da747 856e073 e1881c6 856e073 e1881c6 856e073 57a3c17 5ee2f6e 1eb01dd 856e073 e1881c6 5ee2f6e e1881c6 856e073 e1881c6 4ad1a6f 236bb3e 4ad1a6f 236bb3e 4ad1a6f 236bb3e 4ad1a6f 236bb3e 4ad1a6f 236bb3e 4ad1a6f 236bb3e 4ad1a6f 236bb3e 4ad1a6f 856e073 57a3c17 19e53d6 57a3c17 e1881c6 57a3c17 e1881c6 57a3c17 e1881c6 57a3c17 e1881c6 57a3c17 e1881c6 856e073 236bb3e 57a3c17 856e073 e1881c6 1eb01dd 19e53d6 e1881c6 19e53d6 e1881c6 57a3c17 1eb01dd 19e53d6 856e073 e1881c6 856e073 19e53d6 236bb3e 4ad1a6f 856e073 4ad1a6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import streamlit as st
import nltk
import spacy
import matplotlib.pyplot as plt
from transformers import pipeline
import random
import subprocess
# Ensure spaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Ensure NLTK resources are available
nltk.download("vader_lexicon")
from nltk.sentiment import SentimentIntensityAnalyzer
sia = SentimentIntensityAnalyzer()
# Load English emotion detection pipeline
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
# Load multilingual sentiment model (returns star ratings 1-5 for non-English texts)
multilingual_pipeline = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
# Sample texts
sample_texts = [
"The digital world is transforming the way we read and engage with text.",
"Reading is an essential skill that shapes our understanding of the world.",
"AI-driven education tools can personalize the learning experience for students."
]
# Supported languages for multilingual sentiment analysis
supported_languages = {
"English": "en",
"Dutch": "nl",
"French": "fr",
"German": "de",
"Spanish": "es",
"Italian": "it"
}
# Streamlit UI
st.title("π AI-Powered Adaptive Reading Engagement")
st.write("Analyze how users engage with digital reading using AI-powered insights.")
# Language selection
selected_language = st.selectbox("Select a language:", list(supported_languages.keys()))
# Use session state to store text input
if "user_text" not in st.session_state:
st.session_state.user_text = ""
# Dropdown menu with a new option for "Choose Your Own Text"
text_option = st.selectbox("Choose a sample text or enter your own:", ["Choose Your Own Text"] + sample_texts)
# Text input limit
MAX_WORDS = 100 # Set the max word limit
# If user selects a sample text, use it. Otherwise, allow manual input.
if text_option == "Choose Your Own Text":
text = st.text_area("Enter your own text:", st.session_state.user_text, height=150)
else:
text = sample_texts[sample_texts.index(text_option)] # Select the chosen sample text
# Show word count & limit warning only if the user is entering their own text
word_count = len(text.split())
if text_option == "Choose Your Own Text":
st.markdown(f'<p style="font-size:12px; color:gray;">β οΈ Limit: {MAX_WORDS} words max.</p>', unsafe_allow_html=True)
if word_count > MAX_WORDS:
st.warning(f"β οΈ Your input has {word_count} words. Please limit it to {MAX_WORDS} words.")
# Save user input in session state only if within limit
if text_option == "Choose Your Own Text" and word_count <= MAX_WORDS:
st.session_state.user_text = text
# Function to convert star ratings (1-5) into emotion categories
def convert_star_rating_to_emotion(stars):
star_to_emotion = {
"1 star": ("very negative", 0.1),
"2 stars": ("negative", 0.3),
"3 stars": ("neutral", 0.5),
"4 stars": ("positive", 0.7),
"5 stars": ("very positive", 0.9)
}
return star_to_emotion.get(stars, ("unknown", 0.0))
# Function to generate AI-driven feedback
def generate_feedback(sentiment_score, top_emotion):
if sentiment_score['pos'] > 0.6 or top_emotion in ["very positive", "positive", "joy", "optimism"]:
return "π Your reading is positive! This text might boost engagement and motivation."
elif sentiment_score['neg'] > 0.6 or top_emotion in ["very negative", "negative", "anger", "disgust"]:
return "π The text seems to have a strong negative tone. Consider balancing it with positive information."
elif top_emotion in ["neutral"]:
return "π€ The text is neutral. You might want to explore different perspectives."
else:
return "βοΈ The analysis is inconclusive. Try refining your text for clearer sentiment."
# Sentiment Analysis
if st.button("Analyze Engagement"):
if text and (text_option != "Choose Your Own Text" or word_count <= MAX_WORDS):
# Sentiment Analysis (English)
sentiment_score = sia.polarity_scores(text)
# Emotion Detection
emotion_scores = {}
if selected_language == "English":
emotion_results = emotion_pipeline(text)
top_emotion = max(emotion_results[0], key=lambda x: x['score'])['label']
for e in emotion_results[0]:
emotion_scores[e["label"]] = e["score"]
else:
# Multilingual Sentiment Analysis (Converts Star Ratings to Emotion)
multilingual_results = multilingual_pipeline(text)
top_emotion, emotion_intensity = convert_star_rating_to_emotion(multilingual_results[0]["label"])
emotion_scores = {top_emotion: emotion_intensity}
# Display Sentiment
st.subheader("π Sentiment Analysis")
st.write(f"Positive: {sentiment_score['pos'] * 100:.2f}%, Negative: {sentiment_score['neg'] * 100:.2f}%, Neutral: {sentiment_score['neu'] * 100:.2f}%")
# Display Emotion
st.subheader("π Emotion Detection")
st.write(f"Top Emotion: **{top_emotion.capitalize()}**")
# AI-Generated Feedback
st.subheader("π‘ AI-Generated Feedback")
feedback = generate_feedback(sentiment_score, top_emotion)
st.write(feedback)
# π **Visual Display Chart (Fixed & Restored)**
if emotion_scores:
st.subheader("π Emotion Intensity Chart")
fig, ax = plt.subplots()
ax.bar(emotion_scores.keys(), emotion_scores.values(), color=["red", "orange", "yellow", "green", "blue"])
ax.set_ylabel("Emotion Intensity")
ax.set_xlabel("Emotions")
ax.set_title("Emotion Analysis")
st.pyplot(fig)
elif text_option == "Choose Your Own Text" and word_count > MAX_WORDS:
st.warning("β οΈ Please reduce the text length to analyze.")
else:
st.warning("β οΈ Please enter a text to analyze.") |