DrishtiSharma commited on
Commit
e6bb884
Β·
verified Β·
1 Parent(s): 33dd4ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -67
app.py CHANGED
@@ -1,23 +1,17 @@
1
- import streamlit as st
2
  import os
3
- import json
4
  import requests
5
- import pdfplumber
6
- import chromadb
7
- import re
8
- from langchain.document_loaders import PDFPlumberLoader
9
- from langchain_huggingface import HuggingFaceEmbeddings
10
- from langchain_experimental.text_splitter import SemanticChunker
11
- from langchain_chroma import Chroma
12
  from langchain.chains import LLMChain
13
  from langchain.prompts import PromptTemplate
14
  from langchain_groq import ChatGroq
15
- from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
16
-
17
- # ----------------- Streamlit UI Setup -----------------
18
- st.set_page_config(page_title="Blah-1", layout="centered")
 
19
 
20
- # ----------------- API Keys -----------------
21
  os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
22
 
23
  # Load LLM models
@@ -27,33 +21,32 @@ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
27
  llm_judge.verbose = True
28
  rag_llm.verbose = True
29
 
30
- # Clear ChromaDB cache to fix tenant issue
31
- chromadb.api.client.SharedSystemClient.clear_system_cache()
32
-
33
 
34
- # ----------------- ChromaDB Persistent Directory -----------------
35
- CHROMA_DB_DIR = "/mnt/data/chroma_db"
36
- os.makedirs(CHROMA_DB_DIR, exist_ok=True)
37
-
38
- # ----------------- Initialize Session State -----------------
 
 
39
  if "pdf_loaded" not in st.session_state:
40
  st.session_state.pdf_loaded = False
41
  if "chunked" not in st.session_state:
42
  st.session_state.chunked = False
43
  if "vector_created" not in st.session_state:
44
  st.session_state.vector_created = False
45
- if "processed_chunks" not in st.session_state:
46
- st.session_state.processed_chunks = None
47
- if "vector_store" not in st.session_state:
48
- st.session_state.vector_store = None
49
 
50
- # ----------------- Step 1: Choose PDF Source -----------------
 
 
51
  pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
52
 
53
  if pdf_source == "Upload a PDF file":
54
- uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
55
  if uploaded_file:
56
- st.session_state.pdf_path = "/mnt/data/temp.pdf"
57
  with open(st.session_state.pdf_path, "wb") as f:
58
  f.write(uploaded_file.getbuffer())
59
  st.session_state.pdf_loaded = False
@@ -62,12 +55,12 @@ if pdf_source == "Upload a PDF file":
62
 
63
  elif pdf_source == "Enter a PDF URL":
64
  pdf_url = st.text_input("Enter PDF URL:")
65
- if pdf_url and not st.session_state.pdf_loaded:
66
- with st.spinner("πŸ”„ Downloading PDF..."):
67
  try:
68
  response = requests.get(pdf_url)
69
  if response.status_code == 200:
70
- st.session_state.pdf_path = "/mnt/data/temp.pdf"
71
  with open(st.session_state.pdf_path, "wb") as f:
72
  f.write(response.content)
73
  st.session_state.pdf_loaded = False
@@ -77,42 +70,77 @@ elif pdf_source == "Enter a PDF URL":
77
  else:
78
  st.error("❌ Failed to download PDF. Check the URL.")
79
  except Exception as e:
80
- st.error(f"Error downloading PDF: {e}")
81
-
82
-
83
- # ----------------- Process PDF -----------------
84
- if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
85
- with st.spinner("πŸ”„ Processing document... Please wait."):
86
- loader = PDFPlumberLoader(st.session_state.pdf_path)
87
- docs = loader.load()
88
-
89
- # Embedding Model
90
- model_name = "nomic-ai/modernbert-embed-base"
91
- embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
92
-
93
-
94
- # Prevent unnecessary re-chunking
95
- if not st.session_state.chunked:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  text_splitter = SemanticChunker(embedding_model)
97
- document_chunks = text_splitter.split_documents(docs)
98
- st.session_state.processed_chunks = document_chunks
99
- st.session_state.chunked = True
100
-
101
- st.session_state.pdf_loaded = True
102
- st.success("βœ… Document processed and chunked successfully!")
103
-
104
- # ----------------- Setup Vector Store -----------------
105
- if not st.session_state.vector_created and st.session_state.processed_chunks:
106
- with st.spinner("πŸ”„ Initializing Vector Store..."):
107
- st.session_state.vector_store = Chroma(
108
- persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
109
- collection_name="deepseek_collection",
110
- collection_metadata={"hnsw:space": "cosine"},
111
- embedding_function=embedding_model
112
- )
113
- st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
114
- st.session_state.vector_created = True
115
- st.success("βœ… Vector store initialized successfully!")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
 
118
  # ----------------- Query Input -----------------
 
 
1
  import os
 
2
  import requests
3
+ import streamlit as st
4
+ import pickle
 
 
 
 
 
5
  from langchain.chains import LLMChain
6
  from langchain.prompts import PromptTemplate
7
  from langchain_groq import ChatGroq
8
+ from langchain.document_loaders import PDFPlumberLoader
9
+ from langchain_experimental.text_splitter import SemanticChunker
10
+ from langchain_huggingface import HuggingFaceEmbeddings
11
+ from langchain_chroma import Chroma
12
+ from prompts import rag_prompt
13
 
14
+ # Set API Keys
15
  os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
16
 
17
  # Load LLM models
 
21
  llm_judge.verbose = True
22
  rag_llm.verbose = True
23
 
24
+ VECTOR_DB_PATH = "/tmp/chroma_db"
25
+ CHUNKS_FILE = "/tmp/chunks.pkl"
 
26
 
27
+ # Session State Initialization
28
+ if "vector_store" not in st.session_state:
29
+ st.session_state.vector_store = None
30
+ if "documents" not in st.session_state:
31
+ st.session_state.documents = None
32
+ if "pdf_path" not in st.session_state:
33
+ st.session_state.pdf_path = None
34
  if "pdf_loaded" not in st.session_state:
35
  st.session_state.pdf_loaded = False
36
  if "chunked" not in st.session_state:
37
  st.session_state.chunked = False
38
  if "vector_created" not in st.session_state:
39
  st.session_state.vector_created = False
 
 
 
 
40
 
41
+ st.title("Blah-2")
42
+
43
+ # Step 1: Choose PDF Source
44
  pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
45
 
46
  if pdf_source == "Upload a PDF file":
47
+ uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
48
  if uploaded_file:
49
+ st.session_state.pdf_path = "temp.pdf"
50
  with open(st.session_state.pdf_path, "wb") as f:
51
  f.write(uploaded_file.getbuffer())
52
  st.session_state.pdf_loaded = False
 
55
 
56
  elif pdf_source == "Enter a PDF URL":
57
  pdf_url = st.text_input("Enter PDF URL:")
58
+ if pdf_url and not st.session_state.pdf_path:
59
+ with st.spinner("Downloading PDF..."):
60
  try:
61
  response = requests.get(pdf_url)
62
  if response.status_code == 200:
63
+ st.session_state.pdf_path = "temp.pdf"
64
  with open(st.session_state.pdf_path, "wb") as f:
65
  f.write(response.content)
66
  st.session_state.pdf_loaded = False
 
70
  else:
71
  st.error("❌ Failed to download PDF. Check the URL.")
72
  except Exception as e:
73
+ st.error(f"❌ Error downloading PDF: {e}")
74
+
75
+ # Step 2: Load & Process PDF (Only Once)
76
+ if st.session_state.pdf_path and not st.session_state.pdf_loaded:
77
+ with st.spinner("Loading PDF..."):
78
+ try:
79
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
80
+ docs = loader.load()
81
+ st.session_state.documents = docs
82
+ st.session_state.pdf_loaded = True
83
+ st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
84
+ except Exception as e:
85
+ st.error(f"❌ Error processing PDF: {e}")
86
+
87
+ # Load Cached Chunks if Available
88
+ def load_chunks():
89
+ if os.path.exists(CHUNKS_FILE):
90
+ with open(CHUNKS_FILE, "rb") as f:
91
+ return pickle.load(f)
92
+ return None
93
+
94
+ if not st.session_state.chunked: # Ensure chunking only happens once
95
+ cached_chunks = load_chunks()
96
+ if cached_chunks:
97
+ st.session_state.documents = cached_chunks
98
+ st.session_state.chunked = True
99
+
100
+ # Step 3: Chunking (Only Happens Once)
101
+ if st.session_state.pdf_loaded and not st.session_state.chunked:
102
+ with st.spinner("Chunking the document..."):
103
+ try:
104
+ model_name = "nomic-ai/modernbert-embed-base"
105
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
106
  text_splitter = SemanticChunker(embedding_model)
107
+
108
+ if st.session_state.documents:
109
+ documents = text_splitter.split_documents(st.session_state.documents)
110
+ st.session_state.documents = documents
111
+ st.session_state.chunked = True
112
+
113
+ # Save chunks for persistence
114
+ with open(CHUNKS_FILE, "wb") as f:
115
+ pickle.dump(documents, f)
116
+
117
+ st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
118
+ except Exception as e:
119
+ st.error(f"❌ Error chunking document: {e}")
120
+
121
+ # Step 4: Setup Vectorstore
122
+ def load_vector_store():
123
+ return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
124
+
125
+ if st.session_state.chunked and not st.session_state.vector_created:
126
+ with st.spinner("Creating vector store..."):
127
+ try:
128
+ if st.session_state.vector_store is None: # Prevent unnecessary reloading
129
+ st.session_state.vector_store = load_vector_store()
130
+
131
+ if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions
132
+ st.session_state.vector_store.add_documents(st.session_state.documents)
133
+
134
+ num_documents = len(st.session_state.vector_store.get()["documents"])
135
+ st.session_state.vector_created = True
136
+ st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
137
+ except Exception as e:
138
+ st.error(f"❌ Error creating vector store: {e}")
139
+
140
+ # Debugging Logs
141
+ st.write("πŸ“„ **PDF Loaded:**", st.session_state.pdf_loaded)
142
+ st.write("πŸ”Ή **Chunked:**", st.session_state.chunked)
143
+ st.write("πŸ“‚ **Vector Store Created:**", st.session_state.vector_created)
144
 
145
 
146
  # ----------------- Query Input -----------------