Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -30,7 +30,7 @@ rag_llm.verbose = True
|
|
30 |
# Clear ChromaDB cache to fix tenant issue
|
31 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
32 |
|
33 |
-
st.title("Blah")
|
34 |
|
35 |
# ----------------- ChromaDB Persistent Directory -----------------
|
36 |
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
@@ -48,11 +48,17 @@ if "processed_chunks" not in st.session_state:
|
|
48 |
if "vector_store" not in st.session_state:
|
49 |
st.session_state.vector_store = None
|
50 |
|
|
|
51 |
# ----------------- Metadata Extraction -----------------
|
52 |
def extract_metadata_llm(pdf_path):
|
53 |
-
"""Extracts metadata using LLM instead of regex."""
|
|
|
54 |
with pdfplumber.open(pdf_path) as pdf:
|
55 |
-
first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found."
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Define metadata prompt
|
58 |
metadata_prompt = PromptTemplate(
|
@@ -60,54 +66,67 @@ def extract_metadata_llm(pdf_path):
|
|
60 |
template="""
|
61 |
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
62 |
- If no data is found for a field, return `"Unknown"` instead.
|
63 |
-
-
|
64 |
-
|
65 |
Example output:
|
66 |
-
```json
|
67 |
{
|
68 |
"Title": "Example Paper Title",
|
69 |
"Author": "John Doe, Jane Smith",
|
70 |
"Emails": "[email protected], [email protected]",
|
71 |
"Affiliations": "School of AI, University of Example"
|
72 |
}
|
73 |
-
|
74 |
-
|
75 |
Now, extract the metadata from this document:
|
76 |
-
|
77 |
-
```
|
78 |
{text}
|
79 |
-
```
|
80 |
"""
|
81 |
)
|
82 |
|
83 |
# Run LLM Metadata Extraction
|
84 |
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
85 |
-
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
86 |
|
87 |
-
#
|
|
|
|
|
|
|
88 |
try:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
json_text = json_match.group(1) if json_match else metadata_response["metadata"]
|
95 |
|
|
|
96 |
try:
|
97 |
-
metadata_dict = json.loads(
|
98 |
except json.JSONDecodeError:
|
99 |
-
|
100 |
-
|
101 |
-
"
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
# Ensure all required fields exist
|
107 |
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
108 |
for field in required_fields:
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
|
112 |
return metadata_dict
|
113 |
|
|
|
30 |
# Clear ChromaDB cache to fix tenant issue
|
31 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
32 |
|
33 |
+
# st.title("Blah")
|
34 |
|
35 |
# ----------------- ChromaDB Persistent Directory -----------------
|
36 |
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
|
|
48 |
if "vector_store" not in st.session_state:
|
49 |
st.session_state.vector_store = None
|
50 |
|
51 |
+
# ----------------- Metadata Extraction -----------------
|
52 |
# ----------------- Metadata Extraction -----------------
|
53 |
def extract_metadata_llm(pdf_path):
|
54 |
+
"""Extracts metadata using LLM instead of regex and logs progress in Streamlit UI."""
|
55 |
+
|
56 |
with pdfplumber.open(pdf_path) as pdf:
|
57 |
+
first_page_text = pdf.pages[0].extract_text() or "No text found." if pdf.pages else "No text found."
|
58 |
+
|
59 |
+
# Streamlit Debugging: Show extracted text
|
60 |
+
st.subheader("π Extracted First Page Text for Metadata")
|
61 |
+
st.text_area("First Page Text:", first_page_text, height=200)
|
62 |
|
63 |
# Define metadata prompt
|
64 |
metadata_prompt = PromptTemplate(
|
|
|
66 |
template="""
|
67 |
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
68 |
- If no data is found for a field, return `"Unknown"` instead.
|
69 |
+
- Ensure the output is valid JSON (do not include markdown syntax).
|
70 |
+
|
71 |
Example output:
|
|
|
72 |
{
|
73 |
"Title": "Example Paper Title",
|
74 |
"Author": "John Doe, Jane Smith",
|
75 |
"Emails": "[email protected], [email protected]",
|
76 |
"Affiliations": "School of AI, University of Example"
|
77 |
}
|
78 |
+
|
|
|
79 |
Now, extract the metadata from this document:
|
|
|
|
|
80 |
{text}
|
|
|
81 |
"""
|
82 |
)
|
83 |
|
84 |
# Run LLM Metadata Extraction
|
85 |
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
|
|
86 |
|
87 |
+
# Debugging: Log the LLM input
|
88 |
+
st.subheader("π LLM Input for Metadata Extraction")
|
89 |
+
st.json({"text": first_page_text})
|
90 |
+
|
91 |
try:
|
92 |
+
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
93 |
+
|
94 |
+
# Debugging: Log raw LLM response
|
95 |
+
st.subheader("π Raw LLM Response")
|
96 |
+
st.json(metadata_response)
|
|
|
97 |
|
98 |
+
# Handle JSON extraction from LLM response
|
99 |
try:
|
100 |
+
metadata_dict = json.loads(metadata_response["metadata"])
|
101 |
except json.JSONDecodeError:
|
102 |
+
try:
|
103 |
+
# Attempt to clean up JSON if needed
|
104 |
+
metadata_dict = json.loads(metadata_response["metadata"].strip("```json\n").strip("\n```"))
|
105 |
+
except json.JSONDecodeError:
|
106 |
+
metadata_dict = {
|
107 |
+
"Title": "Unknown",
|
108 |
+
"Author": "Unknown",
|
109 |
+
"Emails": "No emails found",
|
110 |
+
"Affiliations": "No affiliations found"
|
111 |
+
}
|
112 |
+
|
113 |
+
except Exception as e:
|
114 |
+
st.error(f"β LLM Metadata Extraction Failed: {e}")
|
115 |
+
metadata_dict = {
|
116 |
+
"Title": "Unknown",
|
117 |
+
"Author": "Unknown",
|
118 |
+
"Emails": "No emails found",
|
119 |
+
"Affiliations": "No affiliations found"
|
120 |
+
}
|
121 |
|
122 |
# Ensure all required fields exist
|
123 |
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
124 |
for field in required_fields:
|
125 |
+
metadata_dict.setdefault(field, "Unknown")
|
126 |
+
|
127 |
+
# Streamlit Debugging: Display Final Extracted Metadata
|
128 |
+
st.subheader("β
Extracted Metadata")
|
129 |
+
st.json(metadata_dict)
|
130 |
|
131 |
return metadata_dict
|
132 |
|