Spaces:
Build error
Build error
File size: 7,341 Bytes
d244e18 de30673 d244e18 a9e6c3b d244e18 655753e b0aa233 51225e7 d244e18 9476a94 d244e18 3371395 d244e18 a9e6c3b 3f05b9b d244e18 f172bb5 de30673 a601e7b aa98a3f d244e18 f172bb5 d38433c 3b2fd03 b604a12 bca3677 44e6288 bca3677 a620e89 b604a12 3b2fd03 d244e18 5a1233f bca3677 44e6288 a620e89 bca3677 5a1233f bca3677 bba0424 d244e18 d00d31a d244e18 a601e7b d244e18 89e84f0 d244e18 3f05b9b d244e18 3f05b9b d244e18 3f05b9b d244e18 3f05b9b d244e18 3f05b9b d244e18 40a5413 d244e18 3f05b9b 0f11a05 40a5413 229a73d 0f11a05 40a5413 229a73d 0f11a05 40a5413 229a73d 0f11a05 40a5413 229a73d 0f11a05 95ff438 229a73d 0f11a05 95ff438 229a73d 0f11a05 95ff438 229a73d 0f11a05 95ff438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import streamlit as st
import os
import requests
import chromadb
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain, SequentialChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah", layout="centered")
st.title("Blah-1")
# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# ----------------- Clear ChromaDB Cache -----------------
chromadb.api.client.SharedSystemClient.clear_system_cache()
# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# ----------------- Load Models -----------------
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
# Enable verbose logging for debugging
llm_judge.verbose = True
rag_llm.verbose = True
# ----------------- PDF Selection -----------------
#st.subheader("PDF Selection")
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.pdf_loaded:
with st.spinner("π Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Downloaded Successfully!")
else:
st.error("β Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"Error downloading PDF: {e}")
# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
with st.spinner("π Processing document... Please wait."):
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
st.json(docs[0].metadata)
# Embedding Model
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs = {'normalize_embeddings': False})
# Prevent unnecessary re-chunking
if not st.session_state.chunked:
text_splitter = SemanticChunker(embedding_model)
document_chunks = text_splitter.split_documents(docs)
st.session_state.processed_chunks = document_chunks
st.session_state.chunked = True
st.session_state.pdf_loaded = True
st.success("β
Document processed and chunked successfully!")
# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
with st.spinner("π Initializing Vector Store..."):
st.session_state.vector_store = Chroma(
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model
)
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
st.session_state.vector_created = True
st.success("β
Vector store initialized successfully!")
# ----------------- Query Input -----------------
query = st.text_input("π Ask a question about the document:")
if query:
with st.spinner("π Retrieving relevant context..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
retrieved_docs = retriever.invoke(query)
context = [d.page_content for d in retrieved_docs]
st.success("β
Context retrieved successfully!")
# ----------------- Run Individual Chains Explicitly -----------------
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
# ----------------- Display All Outputs -----------------
st.markdown("### Context Relevancy Evaluation")
st.json(response_crisis["relevancy_response"])
st.markdown("### Picked Relevant Contexts")
st.json(relevant_response["context_number"])
st.markdown("### Extracted Relevant Contexts")
st.json(contexts["relevant_contexts"])
st.markdown("### RAG Final Response")
st.write(final_response["final_response"])
st.text("\n-------- context_relevancy_evaluation_chain Statement --------\n")
st.json(final_response["relevancy_response"])
st.text("\n-------- pick_relevant_context_chain Statement --------\n")
st.json(final_response["context_number"])
st.text("\n-------- relevant_contexts_chain Statement --------\n")
st.json(final_response["relevant_contexts"])
st.text("\n-------- Rag Response Statement --------\n")
st.json(final_response["final_response"])
|