File size: 7,341 Bytes
d244e18
 
 
de30673
d244e18
 
 
 
 
 
 
 
a9e6c3b
d244e18
655753e
b0aa233
51225e7
d244e18
 
9476a94
d244e18
3371395
 
d244e18
 
 
 
 
 
 
 
 
 
 
a9e6c3b
3f05b9b
d244e18
 
f172bb5
de30673
 
 
 
a601e7b
aa98a3f
d244e18
f172bb5
d38433c
3b2fd03
b604a12
bca3677
 
44e6288
bca3677
a620e89
 
b604a12
 
3b2fd03
d244e18
 
5a1233f
 
 
bca3677
 
44e6288
a620e89
 
 
bca3677
5a1233f
 
bca3677
bba0424
 
d244e18
 
 
 
 
d00d31a
d244e18
a601e7b
d244e18
89e84f0
d244e18
3f05b9b
 
 
 
 
 
d244e18
 
 
 
3f05b9b
d244e18
 
3f05b9b
d244e18
 
3f05b9b
d244e18
3f05b9b
d244e18
 
 
 
 
 
 
 
 
 
 
 
 
40a5413
 
 
 
 
 
 
 
 
 
d244e18
3f05b9b
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
0f11a05
95ff438
229a73d
0f11a05
95ff438
229a73d
0f11a05
95ff438
229a73d
0f11a05
95ff438
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
import os
import requests
import chromadb
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain, SequentialChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth

# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah", layout="centered")
st.title("Blah-1")

# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# ----------------- Clear ChromaDB Cache -----------------
chromadb.api.client.SharedSystemClient.clear_system_cache()

# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
    st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None

# ----------------- Load Models -----------------
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

# Enable verbose logging for debugging
llm_judge.verbose = True
rag_llm.verbose = True

# ----------------- PDF Selection -----------------
#st.subheader("PDF Selection")
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
    if uploaded_file:
        st.session_state.pdf_path = "temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:")
    if pdf_url and not st.session_state.pdf_loaded:
        with st.spinner("πŸ”„ Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"Error downloading PDF: {e}")

# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
    with st.spinner("πŸ”„ Processing document... Please wait."):
        loader = PDFPlumberLoader(st.session_state.pdf_path)
        docs = loader.load()
        st.json(docs[0].metadata)

        # Embedding Model
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs = {'normalize_embeddings': False})

        # Prevent unnecessary re-chunking
        if not st.session_state.chunked:
            text_splitter = SemanticChunker(embedding_model)
            document_chunks = text_splitter.split_documents(docs)
            st.session_state.processed_chunks = document_chunks
            st.session_state.chunked = True

        st.session_state.pdf_loaded = True
        st.success("βœ… Document processed and chunked successfully!")

# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
    with st.spinner("πŸ”„ Initializing Vector Store..."):
        st.session_state.vector_store = Chroma(
            collection_name="deepseek_collection",
            collection_metadata={"hnsw:space": "cosine"},
            embedding_function=embedding_model
        )
        st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
        st.session_state.vector_created = True
        st.success("βœ… Vector store initialized successfully!")

# ----------------- Query Input -----------------
query = st.text_input("πŸ” Ask a question about the document:")

if query:
    with st.spinner("πŸ”„ Retrieving relevant context..."):
        retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
        retrieved_docs = retriever.invoke(query)
        context = [d.page_content for d in retrieved_docs]
        st.success("βœ… Context retrieved successfully!")

    # ----------------- Run Individual Chains Explicitly -----------------
    context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
    relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
    relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
    response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")

    response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
    relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
    contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
    final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})

    # ----------------- Display All Outputs -----------------
    st.markdown("### Context Relevancy Evaluation")
    st.json(response_crisis["relevancy_response"])

    st.markdown("### Picked Relevant Contexts")
    st.json(relevant_response["context_number"])

    st.markdown("### Extracted Relevant Contexts")
    st.json(contexts["relevant_contexts"])

    st.markdown("### RAG Final Response")
    st.write(final_response["final_response"])

    st.text("\n-------- context_relevancy_evaluation_chain Statement --------\n")
    st.json(final_response["relevancy_response"])

    st.text("\n-------- pick_relevant_context_chain Statement --------\n")
    st.json(final_response["context_number"])

    st.text("\n-------- relevant_contexts_chain Statement --------\n")
    st.json(final_response["relevant_contexts"])

    st.text("\n-------- Rag Response Statement --------\n")
    st.json(final_response["final_response"])