Draken007's picture
Upload 7228 files
2a0bc63 verified
import inspect
import os
import re
import warnings
from collections import OrderedDict
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from ctypes import (
CDLL,
c_bool,
c_int,
c_float,
c_char_p,
c_void_p,
POINTER,
Structure,
)
from typing import (
Any,
Callable,
Generator,
List,
Optional,
Sequence,
Union,
)
from .lib import find_library, load_cuda
from .logger import logger
from .utils import is_gguf, Vector, utf8_split_incomplete
c_int_p = POINTER(c_int)
c_float_p = POINTER(c_float)
llm_p = c_void_p
@dataclass
class Config:
# sample
top_k: int = 40
top_p: float = 0.95
temperature: float = 0.8
repetition_penalty: float = 1.1
last_n_tokens: int = 64
seed: int = -1
# eval
batch_size: int = 8
threads: int = -1
# generate
max_new_tokens: int = 256
stop: Optional[Sequence[str]] = None
stream: bool = False
reset: bool = True
# model
context_length: int = -1
gpu_layers: int = 0
mmap: bool = True
mlock: bool = False
def to_struct(self):
return ConfigStruct(
context_length=self.context_length,
gpu_layers=self.gpu_layers,
mmap=self.mmap,
mlock=self.mlock,
)
class ConfigStruct(Structure):
_fields_ = [
("context_length", c_int),
("gpu_layers", c_int),
("mmap", c_bool),
("mlock", c_bool),
]
docs = OrderedDict(
top_k="The top-k value to use for sampling.",
top_p="The top-p value to use for sampling.",
temperature="The temperature to use for sampling.",
repetition_penalty="The repetition penalty to use for sampling.",
last_n_tokens="The number of last tokens to use for repetition penalty.",
seed="The seed value to use for sampling tokens.",
max_new_tokens="The maximum number of new tokens to generate.",
stop="A list of sequences to stop generation when encountered.",
stream="Whether to stream the generated text.",
reset="Whether to reset the model state before generating text.",
batch_size="The batch size to use for evaluating tokens in a single prompt.",
threads="The number of threads to use for evaluating tokens.",
context_length="The maximum context length to use.",
gpu_layers="The number of layers to run on GPU.",
)
def doc(fn):
doc = []
for param in inspect.signature(fn).parameters:
if param in docs:
default = getattr(Config, param)
doc.append(f"{param}: {docs[param]} Default: `{default}`")
doc = ("\n" + " " * 12).join(doc)
fn.__doc__ = fn.__doc__.format(params=doc)
return fn
def get(*values):
for value in values:
if value is not None:
return value
def load_library(path: Optional[str] = None, gpu: bool = False) -> Any:
# https://docs.python.org/3.8/whatsnew/3.8.html#bpo-36085-whatsnew
# https://github.com/abetlen/llama-cpp-python/pull/225
if hasattr(os, "add_dll_directory") and "CUDA_PATH" in os.environ:
os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "bin"))
path = find_library(path, gpu=gpu)
if "cuda" in path:
load_cuda()
lib = CDLL(path)
lib.ctransformers_llm_create.argtypes = [
c_char_p, # model_path
c_char_p, # model_type
ConfigStruct, # config
]
lib.ctransformers_llm_create.restype = llm_p
lib.ctransformers_llm_delete.argtypes = [llm_p]
lib.ctransformers_llm_delete.restype = None
lib.ctransformers_llm_tokenize.argtypes = [
llm_p,
c_char_p, # text
c_bool, # add_bos_token
c_int_p, # output
]
lib.ctransformers_llm_tokenize.restype = c_int
lib.ctransformers_llm_detokenize.argtypes = [
llm_p,
c_int, # token
]
lib.ctransformers_llm_detokenize.restype = c_char_p
lib.ctransformers_llm_is_eos_token.argtypes = [
llm_p,
c_int, # token
]
lib.ctransformers_llm_is_eos_token.restype = c_bool
lib.ctransformers_llm_eos_token_id.argtypes = [llm_p]
lib.ctransformers_llm_eos_token_id.restype = c_int
lib.ctransformers_llm_bos_token_id.argtypes = [llm_p]
lib.ctransformers_llm_bos_token_id.restype = c_int
lib.ctransformers_llm_vocab_size.argtypes = [llm_p]
lib.ctransformers_llm_vocab_size.restype = c_int
lib.ctransformers_llm_context_length.argtypes = [llm_p]
lib.ctransformers_llm_context_length.restype = c_int
lib.ctransformers_llm_architecture.argtypes = [llm_p]
lib.ctransformers_llm_architecture.restype = c_char_p
lib.ctransformers_llm_batch_eval.argtypes = [
llm_p,
c_int_p, # tokens
c_int, # n_tokens
c_int, # n_past
c_int, # batch_size
c_int, # threads
]
lib.ctransformers_llm_batch_eval.restype = c_bool
lib.ctransformers_llm_logits_data.argtypes = [llm_p]
lib.ctransformers_llm_logits_data.restype = c_float_p
lib.ctransformers_llm_logits_size.argtypes = [llm_p]
lib.ctransformers_llm_logits_size.restype = c_int
lib.ctransformers_llm_embeddings_data.argtypes = [llm_p]
lib.ctransformers_llm_embeddings_data.restype = c_float_p
lib.ctransformers_llm_embeddings_size.argtypes = [llm_p]
lib.ctransformers_llm_embeddings_size.restype = c_int
lib.ctransformers_llm_sample.argtypes = [
llm_p,
c_int_p, # last_tokens
c_int, # n_last
c_int, # top_k
c_float, # top_p
c_float, # temperature
c_float, # repetition_penalty
c_int, # seed
]
lib.ctransformers_llm_sample.restype = c_int
lib.ctransformers_llm_reset.argtypes = [llm_p]
lib.ctransformers_llm_reset.restype = None
return lib
class LLM:
def __init__(
self,
model_path: str,
model_type: Optional[str] = None,
*,
config: Optional[Config] = None,
lib: Optional[str] = None,
):
"""Loads the language model from a local file.
Args:
model_path: The path to a model file.
model_type: The model type.
config: `Config` object.
lib: The path to a shared library or one of `avx2`, `avx`, `basic`.
"""
config = config or Config()
self._model_path = model_path
self._config = config
self._llm = None
self._lib = None
self._context = []
if not Path(model_path).is_file():
raise ValueError(f"Model path '{model_path}' doesn't exist.")
if not model_type:
if not is_gguf(model_path):
raise ValueError(
"Unable to detect model type. Please specify a model type using:\n\n"
" AutoModelForCausalLM.from_pretrained(..., model_type='...')\n\n"
)
model_type = "gguf"
self._lib = load_library(lib, gpu=config.gpu_layers > 0)
self._llm = self._lib.ctransformers_llm_create(
model_path.encode(),
model_type.encode(),
config.to_struct(),
)
if self._llm is None:
raise RuntimeError(
f"Failed to create LLM '{model_type}' from '{model_path}'."
)
architecture = self.ctransformers_llm_architecture().decode()
if architecture:
model_type = architecture
self._model_type = model_type
@property
def model_path(self) -> str:
"""The path to the model file."""
return self._model_path
@property
def model_type(self) -> str:
"""The model type."""
return self._model_type
@property
def config(self) -> Config:
"""The config object."""
return self._config
@property
def eos_token_id(self) -> int:
"""The end-of-sequence token."""
return self.ctransformers_llm_eos_token_id()
@property
def bos_token_id(self) -> int:
"""The beginning-of-sequence token."""
return self.ctransformers_llm_bos_token_id()
@property
def pad_token_id(self) -> int:
"""The padding token."""
return self.ctransformers_llm_eos_token_id()
@property
def vocab_size(self) -> int:
"""The number of tokens in vocabulary."""
return self.ctransformers_llm_vocab_size()
@property
def context_length(self) -> int:
"""The context length of model."""
return self.ctransformers_llm_context_length()
@property
def logits(self) -> List[float]:
"""The unnormalized log probabilities."""
return Vector(
self.ctransformers_llm_logits_data(),
self.ctransformers_llm_logits_size(),
)
@property
def embeddings(self) -> List[float]:
"""The input embeddings."""
return Vector(
self.ctransformers_llm_embeddings_data(),
self.ctransformers_llm_embeddings_size(),
)
def __getattr__(self, name: str) -> Callable:
lib, llm = self._lib, self._llm
if name.startswith("ctransformers_llm_") and hasattr(lib, name):
return partial(getattr(lib, name), llm)
raise AttributeError(f"'LLM' object has no attribute '{name}'")
def tokenize(self, text: str, add_bos_token: Optional[bool] = None) -> List[int]:
"""Converts a text into list of tokens.
Args:
text: The text to tokenize.
add_bos_token: Whether to add the beginning-of-sequence token.
Returns:
The list of tokens.
"""
if add_bos_token is None:
add_bos_token = self.model_type == "llama"
tokens = (c_int * (len(text) + 1))()
n_tokens = self.ctransformers_llm_tokenize(text.encode(), add_bos_token, tokens)
return tokens[:n_tokens]
def detokenize(
self,
tokens: Sequence[int],
decode: bool = True,
) -> Union[str, bytes]:
"""Converts a list of tokens to text.
Args:
tokens: The list of tokens.
decode: Whether to decode the text as UTF-8 string.
Returns:
The combined text of all tokens.
"""
if isinstance(tokens, int):
tokens = [tokens]
texts = []
for token in tokens:
text = self.ctransformers_llm_detokenize(token)
texts.append(text)
texts = b"".join(texts)
if decode:
texts = texts.decode(errors="ignore")
# https://github.com/ggerganov/llama.cpp/blob/43033b7bb4858da4f591715b3babdf906c9b7cbc/common/common.cpp#L778-L781
if tokens[:1] == [self.bos_token_id] and texts[:1] == " ":
texts = texts[1:]
return texts
def is_eos_token(self, token: int) -> bool:
"""Checks if a token is an end-of-sequence token.
Args:
token: The token to check.
Returns:
`True` if the token is an end-of-sequence token else `False`.
"""
return self.ctransformers_llm_is_eos_token(token)
@doc
def eval(
self,
tokens: Sequence[int],
*,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
) -> None:
"""Evaluates a list of tokens.
Args:
tokens: The list of tokens to evaluate.
{params}
"""
config = self.config
batch_size = get(batch_size, config.batch_size)
threads = get(threads, config.threads)
n_past = len(self._context)
n_tokens = len(tokens)
if n_past + n_tokens > self.context_length:
logger.warning(
f"Number of tokens ({n_past + n_tokens}) exceeded maximum context length ({self.context_length})."
)
tokens = (c_int * n_tokens)(*tokens)
status = self.ctransformers_llm_batch_eval(
tokens,
n_tokens,
n_past,
batch_size,
threads,
)
if not status:
raise RuntimeError("Failed to evaluate tokens.")
self._context.extend(tokens)
@doc
def sample(
self,
*,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
) -> int:
"""Samples a token from the model.
Args:
{params}
Returns:
The sampled token.
"""
config = self.config
top_k = get(top_k, config.top_k)
top_p = get(top_p, config.top_p)
temperature = get(temperature, config.temperature)
repetition_penalty = get(repetition_penalty, config.repetition_penalty)
last_n_tokens = get(last_n_tokens, config.last_n_tokens)
seed = get(seed, config.seed)
if last_n_tokens < 0:
last_n_tokens = self.context_length
last_tokens = self._context[-last_n_tokens:]
n_last = len(last_tokens)
last_tokens = (c_int * n_last)(*last_tokens)
return self.ctransformers_llm_sample(
last_tokens,
n_last,
top_k,
top_p,
temperature,
repetition_penalty,
seed,
)
def reset(self) -> None:
"""Deprecated since 0.2.27."""
warnings.warn(
"`LLM.reset()` method is deprecated since 0.2.27. Please use high-level API."
)
self._context.clear()
self.ctransformers_llm_reset()
def __del__(self):
if self._llm is not None:
self.ctransformers_llm_delete()
@doc
def prepare_inputs_for_generation(
self,
tokens: Sequence[int],
*,
reset: Optional[bool] = None,
) -> Sequence[int]:
"""Removes input tokens that are evaluated in the past and updates the LLM context.
Args:
tokens: The list of input tokens.
{params}
Returns:
The list of tokens to evaluate.
"""
config = self.config
reset = get(reset, config.reset)
if not reset:
return tokens
# Keep at least one input token to evaluate the logits.
n = min(len(tokens) - 1, len(self._context))
l = 0
while l < n and tokens[l] == self._context[l]:
l += 1
# Remove input tokens that are evaluated in the past and update context.
tokens = tokens[l:]
self._context = self._context[:l]
return tokens
@doc
def generate(
self,
tokens: Sequence[int],
*,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
reset: Optional[bool] = None,
) -> Generator[int, None, None]:
"""Generates new tokens from a list of tokens.
Args:
tokens: The list of tokens to generate tokens from.
{params}
Returns:
The generated tokens.
"""
tokens = self.prepare_inputs_for_generation(tokens, reset=reset)
self.eval(tokens, batch_size=batch_size, threads=threads)
while True:
token = self.sample(
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
last_n_tokens=last_n_tokens,
seed=seed,
)
self.eval([token], batch_size=batch_size, threads=threads)
if self.is_eos_token(token):
break
yield token
def _stream(
self,
prompt: str,
*,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
reset: Optional[bool] = None,
) -> Generator[str, None, None]:
config = self.config
max_new_tokens = get(max_new_tokens, config.max_new_tokens)
stop = get(stop, config.stop) or []
if isinstance(stop, str):
stop = [stop]
tokens = self.tokenize(prompt)
stop_regex = re.compile("|".join(map(re.escape, stop)))
count = 0
text = ""
incomplete = b""
for token in self.generate(
tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
last_n_tokens=last_n_tokens,
seed=seed,
batch_size=batch_size,
threads=threads,
reset=reset,
):
# Handle incomplete UTF-8 multi-byte characters.
incomplete += self.detokenize([token], decode=False)
complete, incomplete = utf8_split_incomplete(incomplete)
text += complete.decode(errors="ignore")
# https://github.com/abetlen/llama-cpp-python/blob/1a13d76c487df1c8560132d10bda62d6e2f4fa93/llama_cpp/llama.py#L686-L706
# Check if one of the stop sequences is part of the text.
# Note that the stop sequence may not always be at the end of text.
if stop:
match = stop_regex.search(text)
if match:
text = text[: match.start()]
break
# Avoid sending the longest suffix of text which is also a prefix
# of a stop sequence, as it can form a stop sequence with the text
# generated later.
longest = 0
for s in stop:
for i in range(len(s), 0, -1):
if text.endswith(s[:i]):
longest = max(i, longest)
break
end = len(text) - longest
if end > 0:
yield text[:end]
text = text[end:]
count += 1
if count >= max_new_tokens:
break
if text:
yield text
@doc
def __call__(
self,
prompt: str,
*,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
stream: Optional[bool] = None,
reset: Optional[bool] = None,
) -> Union[str, Generator[str, None, None]]:
"""Generates text from a prompt.
Args:
prompt: The prompt to generate text from.
{params}
Returns:
The generated text.
"""
config = self.config
stream = get(stream, config.stream)
text = self._stream(
prompt,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
last_n_tokens=last_n_tokens,
seed=seed,
batch_size=batch_size,
threads=threads,
stop=stop,
reset=reset,
)
if stream:
return text
return "".join(text)
@doc
def embed(
self,
input: Union[str, Sequence[int]],
*,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
) -> List[float]:
"""Computes embeddings for a text or list of tokens.
> **Note:** Currently only LLaMA and Falcon models support embeddings.
Args:
input: The input text or list of tokens to get embeddings for.
{params}
Returns:
The input embeddings.
"""
if isinstance(input, str):
input = self.tokenize(input)
input = self.prepare_inputs_for_generation(input, reset=True)
self.eval(input, batch_size=batch_size, threads=threads)
return list(self.embeddings)