File size: 20,839 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import inspect
import os
import re
import warnings
from collections import OrderedDict
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from ctypes import (
    CDLL,
    c_bool,
    c_int,
    c_float,
    c_char_p,
    c_void_p,
    POINTER,
    Structure,
)
from typing import (
    Any,
    Callable,
    Generator,
    List,
    Optional,
    Sequence,
    Union,
)

from .lib import find_library, load_cuda
from .logger import logger
from .utils import is_gguf, Vector, utf8_split_incomplete

c_int_p = POINTER(c_int)
c_float_p = POINTER(c_float)
llm_p = c_void_p


@dataclass
class Config:
    # sample
    top_k: int = 40
    top_p: float = 0.95
    temperature: float = 0.8
    repetition_penalty: float = 1.1
    last_n_tokens: int = 64
    seed: int = -1

    # eval
    batch_size: int = 8
    threads: int = -1

    # generate
    max_new_tokens: int = 256
    stop: Optional[Sequence[str]] = None
    stream: bool = False
    reset: bool = True

    # model
    context_length: int = -1
    gpu_layers: int = 0
    mmap: bool = True
    mlock: bool = False

    def to_struct(self):
        return ConfigStruct(
            context_length=self.context_length,
            gpu_layers=self.gpu_layers,
            mmap=self.mmap,
            mlock=self.mlock,
        )


class ConfigStruct(Structure):
    _fields_ = [
        ("context_length", c_int),
        ("gpu_layers", c_int),
        ("mmap", c_bool),
        ("mlock", c_bool),
    ]


docs = OrderedDict(
    top_k="The top-k value to use for sampling.",
    top_p="The top-p value to use for sampling.",
    temperature="The temperature to use for sampling.",
    repetition_penalty="The repetition penalty to use for sampling.",
    last_n_tokens="The number of last tokens to use for repetition penalty.",
    seed="The seed value to use for sampling tokens.",
    max_new_tokens="The maximum number of new tokens to generate.",
    stop="A list of sequences to stop generation when encountered.",
    stream="Whether to stream the generated text.",
    reset="Whether to reset the model state before generating text.",
    batch_size="The batch size to use for evaluating tokens in a single prompt.",
    threads="The number of threads to use for evaluating tokens.",
    context_length="The maximum context length to use.",
    gpu_layers="The number of layers to run on GPU.",
)


def doc(fn):
    doc = []
    for param in inspect.signature(fn).parameters:
        if param in docs:
            default = getattr(Config, param)
            doc.append(f"{param}: {docs[param]} Default: `{default}`")
    doc = ("\n" + " " * 12).join(doc)
    fn.__doc__ = fn.__doc__.format(params=doc)
    return fn


def get(*values):
    for value in values:
        if value is not None:
            return value


def load_library(path: Optional[str] = None, gpu: bool = False) -> Any:
    # https://docs.python.org/3.8/whatsnew/3.8.html#bpo-36085-whatsnew
    # https://github.com/abetlen/llama-cpp-python/pull/225
    if hasattr(os, "add_dll_directory") and "CUDA_PATH" in os.environ:
        os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "bin"))

    path = find_library(path, gpu=gpu)
    if "cuda" in path:
        load_cuda()
    lib = CDLL(path)

    lib.ctransformers_llm_create.argtypes = [
        c_char_p,  # model_path
        c_char_p,  # model_type
        ConfigStruct,  # config
    ]
    lib.ctransformers_llm_create.restype = llm_p

    lib.ctransformers_llm_delete.argtypes = [llm_p]
    lib.ctransformers_llm_delete.restype = None

    lib.ctransformers_llm_tokenize.argtypes = [
        llm_p,
        c_char_p,  # text
        c_bool,  # add_bos_token
        c_int_p,  # output
    ]
    lib.ctransformers_llm_tokenize.restype = c_int

    lib.ctransformers_llm_detokenize.argtypes = [
        llm_p,
        c_int,  # token
    ]
    lib.ctransformers_llm_detokenize.restype = c_char_p

    lib.ctransformers_llm_is_eos_token.argtypes = [
        llm_p,
        c_int,  # token
    ]
    lib.ctransformers_llm_is_eos_token.restype = c_bool

    lib.ctransformers_llm_eos_token_id.argtypes = [llm_p]
    lib.ctransformers_llm_eos_token_id.restype = c_int

    lib.ctransformers_llm_bos_token_id.argtypes = [llm_p]
    lib.ctransformers_llm_bos_token_id.restype = c_int

    lib.ctransformers_llm_vocab_size.argtypes = [llm_p]
    lib.ctransformers_llm_vocab_size.restype = c_int

    lib.ctransformers_llm_context_length.argtypes = [llm_p]
    lib.ctransformers_llm_context_length.restype = c_int

    lib.ctransformers_llm_architecture.argtypes = [llm_p]
    lib.ctransformers_llm_architecture.restype = c_char_p

    lib.ctransformers_llm_batch_eval.argtypes = [
        llm_p,
        c_int_p,  # tokens
        c_int,  # n_tokens
        c_int,  # n_past
        c_int,  # batch_size
        c_int,  # threads
    ]
    lib.ctransformers_llm_batch_eval.restype = c_bool

    lib.ctransformers_llm_logits_data.argtypes = [llm_p]
    lib.ctransformers_llm_logits_data.restype = c_float_p
    lib.ctransformers_llm_logits_size.argtypes = [llm_p]
    lib.ctransformers_llm_logits_size.restype = c_int

    lib.ctransformers_llm_embeddings_data.argtypes = [llm_p]
    lib.ctransformers_llm_embeddings_data.restype = c_float_p
    lib.ctransformers_llm_embeddings_size.argtypes = [llm_p]
    lib.ctransformers_llm_embeddings_size.restype = c_int

    lib.ctransformers_llm_sample.argtypes = [
        llm_p,
        c_int_p,  # last_tokens
        c_int,  # n_last
        c_int,  # top_k
        c_float,  # top_p
        c_float,  # temperature
        c_float,  # repetition_penalty
        c_int,  # seed
    ]
    lib.ctransformers_llm_sample.restype = c_int

    lib.ctransformers_llm_reset.argtypes = [llm_p]
    lib.ctransformers_llm_reset.restype = None

    return lib


class LLM:
    def __init__(
        self,
        model_path: str,
        model_type: Optional[str] = None,
        *,
        config: Optional[Config] = None,
        lib: Optional[str] = None,
    ):
        """Loads the language model from a local file.

        Args:
            model_path: The path to a model file.
            model_type: The model type.
            config: `Config` object.
            lib: The path to a shared library or one of `avx2`, `avx`, `basic`.
        """
        config = config or Config()
        self._model_path = model_path
        self._config = config
        self._llm = None
        self._lib = None
        self._context = []

        if not Path(model_path).is_file():
            raise ValueError(f"Model path '{model_path}' doesn't exist.")

        if not model_type:
            if not is_gguf(model_path):
                raise ValueError(
                    "Unable to detect model type. Please specify a model type using:\n\n"
                    "  AutoModelForCausalLM.from_pretrained(..., model_type='...')\n\n"
                )
            model_type = "gguf"

        self._lib = load_library(lib, gpu=config.gpu_layers > 0)
        self._llm = self._lib.ctransformers_llm_create(
            model_path.encode(),
            model_type.encode(),
            config.to_struct(),
        )
        if self._llm is None:
            raise RuntimeError(
                f"Failed to create LLM '{model_type}' from '{model_path}'."
            )
        architecture = self.ctransformers_llm_architecture().decode()
        if architecture:
            model_type = architecture
        self._model_type = model_type

    @property
    def model_path(self) -> str:
        """The path to the model file."""
        return self._model_path

    @property
    def model_type(self) -> str:
        """The model type."""
        return self._model_type

    @property
    def config(self) -> Config:
        """The config object."""
        return self._config

    @property
    def eos_token_id(self) -> int:
        """The end-of-sequence token."""
        return self.ctransformers_llm_eos_token_id()

    @property
    def bos_token_id(self) -> int:
        """The beginning-of-sequence token."""
        return self.ctransformers_llm_bos_token_id()

    @property
    def pad_token_id(self) -> int:
        """The padding token."""
        return self.ctransformers_llm_eos_token_id()

    @property
    def vocab_size(self) -> int:
        """The number of tokens in vocabulary."""
        return self.ctransformers_llm_vocab_size()

    @property
    def context_length(self) -> int:
        """The context length of model."""
        return self.ctransformers_llm_context_length()

    @property
    def logits(self) -> List[float]:
        """The unnormalized log probabilities."""
        return Vector(
            self.ctransformers_llm_logits_data(),
            self.ctransformers_llm_logits_size(),
        )

    @property
    def embeddings(self) -> List[float]:
        """The input embeddings."""
        return Vector(
            self.ctransformers_llm_embeddings_data(),
            self.ctransformers_llm_embeddings_size(),
        )

    def __getattr__(self, name: str) -> Callable:
        lib, llm = self._lib, self._llm
        if name.startswith("ctransformers_llm_") and hasattr(lib, name):
            return partial(getattr(lib, name), llm)
        raise AttributeError(f"'LLM' object has no attribute '{name}'")

    def tokenize(self, text: str, add_bos_token: Optional[bool] = None) -> List[int]:
        """Converts a text into list of tokens.

        Args:
            text: The text to tokenize.
            add_bos_token: Whether to add the beginning-of-sequence token.

        Returns:
            The list of tokens.
        """
        if add_bos_token is None:
            add_bos_token = self.model_type == "llama"
        tokens = (c_int * (len(text) + 1))()
        n_tokens = self.ctransformers_llm_tokenize(text.encode(), add_bos_token, tokens)
        return tokens[:n_tokens]

    def detokenize(
        self,
        tokens: Sequence[int],
        decode: bool = True,
    ) -> Union[str, bytes]:
        """Converts a list of tokens to text.

        Args:
            tokens: The list of tokens.
            decode: Whether to decode the text as UTF-8 string.

        Returns:
            The combined text of all tokens.
        """
        if isinstance(tokens, int):
            tokens = [tokens]
        texts = []
        for token in tokens:
            text = self.ctransformers_llm_detokenize(token)
            texts.append(text)
        texts = b"".join(texts)
        if decode:
            texts = texts.decode(errors="ignore")
            # https://github.com/ggerganov/llama.cpp/blob/43033b7bb4858da4f591715b3babdf906c9b7cbc/common/common.cpp#L778-L781
            if tokens[:1] == [self.bos_token_id] and texts[:1] == " ":
                texts = texts[1:]
        return texts

    def is_eos_token(self, token: int) -> bool:
        """Checks if a token is an end-of-sequence token.

        Args:
            token: The token to check.

        Returns:
            `True` if the token is an end-of-sequence token else `False`.
        """
        return self.ctransformers_llm_is_eos_token(token)

    @doc
    def eval(
        self,
        tokens: Sequence[int],
        *,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
    ) -> None:
        """Evaluates a list of tokens.

        Args:
            tokens: The list of tokens to evaluate.
            {params}
        """
        config = self.config
        batch_size = get(batch_size, config.batch_size)
        threads = get(threads, config.threads)

        n_past = len(self._context)
        n_tokens = len(tokens)
        if n_past + n_tokens > self.context_length:
            logger.warning(
                f"Number of tokens ({n_past + n_tokens}) exceeded maximum context length ({self.context_length})."
            )
        tokens = (c_int * n_tokens)(*tokens)
        status = self.ctransformers_llm_batch_eval(
            tokens,
            n_tokens,
            n_past,
            batch_size,
            threads,
        )
        if not status:
            raise RuntimeError("Failed to evaluate tokens.")
        self._context.extend(tokens)

    @doc
    def sample(
        self,
        *,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        last_n_tokens: Optional[int] = None,
        seed: Optional[int] = None,
    ) -> int:
        """Samples a token from the model.

        Args:
            {params}

        Returns:
            The sampled token.
        """
        config = self.config
        top_k = get(top_k, config.top_k)
        top_p = get(top_p, config.top_p)
        temperature = get(temperature, config.temperature)
        repetition_penalty = get(repetition_penalty, config.repetition_penalty)
        last_n_tokens = get(last_n_tokens, config.last_n_tokens)
        seed = get(seed, config.seed)

        if last_n_tokens < 0:
            last_n_tokens = self.context_length
        last_tokens = self._context[-last_n_tokens:]
        n_last = len(last_tokens)
        last_tokens = (c_int * n_last)(*last_tokens)

        return self.ctransformers_llm_sample(
            last_tokens,
            n_last,
            top_k,
            top_p,
            temperature,
            repetition_penalty,
            seed,
        )

    def reset(self) -> None:
        """Deprecated since 0.2.27."""
        warnings.warn(
            "`LLM.reset()` method is deprecated since 0.2.27. Please use high-level API."
        )
        self._context.clear()
        self.ctransformers_llm_reset()

    def __del__(self):
        if self._llm is not None:
            self.ctransformers_llm_delete()

    @doc
    def prepare_inputs_for_generation(
        self,
        tokens: Sequence[int],
        *,
        reset: Optional[bool] = None,
    ) -> Sequence[int]:
        """Removes input tokens that are evaluated in the past and updates the LLM context.

        Args:
            tokens: The list of input tokens.
            {params}

        Returns:
            The list of tokens to evaluate.
        """
        config = self.config
        reset = get(reset, config.reset)

        if not reset:
            return tokens

        # Keep at least one input token to evaluate the logits.
        n = min(len(tokens) - 1, len(self._context))
        l = 0
        while l < n and tokens[l] == self._context[l]:
            l += 1
        # Remove input tokens that are evaluated in the past and update context.
        tokens = tokens[l:]
        self._context = self._context[:l]

        return tokens

    @doc
    def generate(
        self,
        tokens: Sequence[int],
        *,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        last_n_tokens: Optional[int] = None,
        seed: Optional[int] = None,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
        reset: Optional[bool] = None,
    ) -> Generator[int, None, None]:
        """Generates new tokens from a list of tokens.

        Args:
            tokens: The list of tokens to generate tokens from.
            {params}

        Returns:
            The generated tokens.
        """
        tokens = self.prepare_inputs_for_generation(tokens, reset=reset)
        self.eval(tokens, batch_size=batch_size, threads=threads)
        while True:
            token = self.sample(
                top_k=top_k,
                top_p=top_p,
                temperature=temperature,
                repetition_penalty=repetition_penalty,
                last_n_tokens=last_n_tokens,
                seed=seed,
            )
            self.eval([token], batch_size=batch_size, threads=threads)
            if self.is_eos_token(token):
                break
            yield token

    def _stream(
        self,
        prompt: str,
        *,
        max_new_tokens: Optional[int] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        last_n_tokens: Optional[int] = None,
        seed: Optional[int] = None,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
        stop: Optional[Sequence[str]] = None,
        reset: Optional[bool] = None,
    ) -> Generator[str, None, None]:
        config = self.config
        max_new_tokens = get(max_new_tokens, config.max_new_tokens)
        stop = get(stop, config.stop) or []
        if isinstance(stop, str):
            stop = [stop]

        tokens = self.tokenize(prompt)

        stop_regex = re.compile("|".join(map(re.escape, stop)))
        count = 0
        text = ""
        incomplete = b""
        for token in self.generate(
            tokens,
            top_k=top_k,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            last_n_tokens=last_n_tokens,
            seed=seed,
            batch_size=batch_size,
            threads=threads,
            reset=reset,
        ):
            # Handle incomplete UTF-8 multi-byte characters.
            incomplete += self.detokenize([token], decode=False)
            complete, incomplete = utf8_split_incomplete(incomplete)
            text += complete.decode(errors="ignore")

            # https://github.com/abetlen/llama-cpp-python/blob/1a13d76c487df1c8560132d10bda62d6e2f4fa93/llama_cpp/llama.py#L686-L706
            # Check if one of the stop sequences is part of the text.
            # Note that the stop sequence may not always be at the end of text.
            if stop:
                match = stop_regex.search(text)
                if match:
                    text = text[: match.start()]
                    break

            # Avoid sending the longest suffix of text which is also a prefix
            # of a stop sequence, as it can form a stop sequence with the text
            # generated later.
            longest = 0
            for s in stop:
                for i in range(len(s), 0, -1):
                    if text.endswith(s[:i]):
                        longest = max(i, longest)
                        break

            end = len(text) - longest
            if end > 0:
                yield text[:end]
                text = text[end:]

            count += 1
            if count >= max_new_tokens:
                break

        if text:
            yield text

    @doc
    def __call__(
        self,
        prompt: str,
        *,
        max_new_tokens: Optional[int] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        last_n_tokens: Optional[int] = None,
        seed: Optional[int] = None,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
        stop: Optional[Sequence[str]] = None,
        stream: Optional[bool] = None,
        reset: Optional[bool] = None,
    ) -> Union[str, Generator[str, None, None]]:
        """Generates text from a prompt.

        Args:
            prompt: The prompt to generate text from.
            {params}

        Returns:
            The generated text.
        """
        config = self.config
        stream = get(stream, config.stream)

        text = self._stream(
            prompt,
            max_new_tokens=max_new_tokens,
            top_k=top_k,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            last_n_tokens=last_n_tokens,
            seed=seed,
            batch_size=batch_size,
            threads=threads,
            stop=stop,
            reset=reset,
        )
        if stream:
            return text
        return "".join(text)

    @doc
    def embed(
        self,
        input: Union[str, Sequence[int]],
        *,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
    ) -> List[float]:
        """Computes embeddings for a text or list of tokens.

        > **Note:** Currently only LLaMA and Falcon models support embeddings.

        Args:
            input: The input text or list of tokens to get embeddings for.
            {params}

        Returns:
            The input embeddings.
        """
        if isinstance(input, str):
            input = self.tokenize(input)
        input = self.prepare_inputs_for_generation(input, reset=True)
        self.eval(input, batch_size=batch_size, threads=threads)
        return list(self.embeddings)