VishwaTechnologiesPvtLtd
T5Tokenizer
f89a774
from transformers import pipeline, T5Tokenizer, AutoModelForSeq2SeqLM
from .IQuestionGenerator import IQuestionGenerator
from backend.services.SentenceCheck import SentenceCheck
from backend.models.AIParamModel import AIParam
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[QuestionGenerator] Using device: {device}")
# valhalla model with slow tokenizer
tokenizer_qg_simple = T5Tokenizer.from_pretrained("valhalla/t5-small-qg-hl")
model_qg_simple = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-small-qg-hl")
qg_simple = pipeline(
"text2text-generation",
model=model_qg_simple,
tokenizer=tokenizer_qg_simple,
device=0 if torch.cuda.is_available() else -1
)
# iarfmoose model with slow tokenizer
tokenizer_qg_advanced = T5Tokenizer.from_pretrained("iarfmoose/t5-base-question-generator")
model_qg_advanced = AutoModelForSeq2SeqLM.from_pretrained("iarfmoose/t5-base-question-generator")
qg_advanced = pipeline(
"text2text-generation",
model=model_qg_advanced,
tokenizer=tokenizer_qg_advanced,
device=0 if torch.cuda.is_available() else -1
)
sentenceCheck = SentenceCheck()
class QuestionGenerator(IQuestionGenerator):
def generate_questions_advance(self, text: str, aIParam: AIParam) -> list:
input_text = f"generate questions: {text}"
outputs = qg_advanced(
input_text,
max_length=aIParam.max_length,
num_return_sequences=aIParam.num_return_sequences,
do_sample=aIParam.do_sample,
top_k=aIParam.top_k,
top_p=aIParam.top_p,
temperature=aIParam.temperature
)
raw_sentences = [o["generated_text"] for o in outputs]
filtered = [s for s in raw_sentences if sentenceCheck.IsSentenceCorrect(s)]
return filtered
def generate_questions_simple(self, text: str, aIParam: AIParam) -> list:
input_text = f"generate questions: {text}"
outputs = qg_simple(
input_text,
max_length=aIParam.max_length,
num_return_sequences=aIParam.num_return_sequences,
do_sample=aIParam.do_sample,
top_k=aIParam.top_k,
top_p=aIParam.top_p,
temperature=aIParam.temperature
)
return [o["generated_text"] for o in outputs]