|
from transformers import pipeline, T5Tokenizer, AutoModelForSeq2SeqLM |
|
from .IQuestionGenerator import IQuestionGenerator |
|
from backend.services.SentenceCheck import SentenceCheck |
|
from backend.models.AIParamModel import AIParam |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"[QuestionGenerator] Using device: {device}") |
|
|
|
|
|
tokenizer_qg_simple = T5Tokenizer.from_pretrained("valhalla/t5-small-qg-hl") |
|
model_qg_simple = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-small-qg-hl") |
|
|
|
qg_simple = pipeline( |
|
"text2text-generation", |
|
model=model_qg_simple, |
|
tokenizer=tokenizer_qg_simple, |
|
device=0 if torch.cuda.is_available() else -1 |
|
) |
|
|
|
|
|
tokenizer_qg_advanced = T5Tokenizer.from_pretrained("iarfmoose/t5-base-question-generator") |
|
model_qg_advanced = AutoModelForSeq2SeqLM.from_pretrained("iarfmoose/t5-base-question-generator") |
|
|
|
qg_advanced = pipeline( |
|
"text2text-generation", |
|
model=model_qg_advanced, |
|
tokenizer=tokenizer_qg_advanced, |
|
device=0 if torch.cuda.is_available() else -1 |
|
) |
|
sentenceCheck = SentenceCheck() |
|
|
|
class QuestionGenerator(IQuestionGenerator): |
|
def generate_questions_advance(self, text: str, aIParam: AIParam) -> list: |
|
input_text = f"generate questions: {text}" |
|
outputs = qg_advanced( |
|
input_text, |
|
max_length=aIParam.max_length, |
|
num_return_sequences=aIParam.num_return_sequences, |
|
do_sample=aIParam.do_sample, |
|
top_k=aIParam.top_k, |
|
top_p=aIParam.top_p, |
|
temperature=aIParam.temperature |
|
) |
|
raw_sentences = [o["generated_text"] for o in outputs] |
|
filtered = [s for s in raw_sentences if sentenceCheck.IsSentenceCorrect(s)] |
|
return filtered |
|
|
|
def generate_questions_simple(self, text: str, aIParam: AIParam) -> list: |
|
input_text = f"generate questions: {text}" |
|
outputs = qg_simple( |
|
input_text, |
|
max_length=aIParam.max_length, |
|
num_return_sequences=aIParam.num_return_sequences, |
|
do_sample=aIParam.do_sample, |
|
top_k=aIParam.top_k, |
|
top_p=aIParam.top_p, |
|
temperature=aIParam.temperature |
|
) |
|
return [o["generated_text"] for o in outputs] |
|
|