VishwaTechnologiesPvtLtd commited on
Commit
f89a774
·
1 Parent(s): a2ff264

T5Tokenizer

Browse files
backend/services/QuestionGenerator.py CHANGED
@@ -1,4 +1,4 @@
1
- from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
2
  from .IQuestionGenerator import IQuestionGenerator
3
  from backend.services.SentenceCheck import SentenceCheck
4
  from backend.models.AIParamModel import AIParam
@@ -8,7 +8,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
  print(f"[QuestionGenerator] Using device: {device}")
9
 
10
  # valhalla model with slow tokenizer
11
- tokenizer_qg_simple = AutoTokenizer.from_pretrained("valhalla/t5-small-qg-hl", use_fast=False)
12
  model_qg_simple = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-small-qg-hl")
13
 
14
  qg_simple = pipeline(
@@ -19,7 +19,7 @@ qg_simple = pipeline(
19
  )
20
 
21
  # iarfmoose model with slow tokenizer
22
- tokenizer_qg_advanced = AutoTokenizer.from_pretrained("iarfmoose/t5-base-question-generator", use_fast=False)
23
  model_qg_advanced = AutoModelForSeq2SeqLM.from_pretrained("iarfmoose/t5-base-question-generator")
24
 
25
  qg_advanced = pipeline(
 
1
+ from transformers import pipeline, T5Tokenizer, AutoModelForSeq2SeqLM
2
  from .IQuestionGenerator import IQuestionGenerator
3
  from backend.services.SentenceCheck import SentenceCheck
4
  from backend.models.AIParamModel import AIParam
 
8
  print(f"[QuestionGenerator] Using device: {device}")
9
 
10
  # valhalla model with slow tokenizer
11
+ tokenizer_qg_simple = T5Tokenizer.from_pretrained("valhalla/t5-small-qg-hl")
12
  model_qg_simple = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-small-qg-hl")
13
 
14
  qg_simple = pipeline(
 
19
  )
20
 
21
  # iarfmoose model with slow tokenizer
22
+ tokenizer_qg_advanced = T5Tokenizer.from_pretrained("iarfmoose/t5-base-question-generator")
23
  model_qg_advanced = AutoModelForSeq2SeqLM.from_pretrained("iarfmoose/t5-base-question-generator")
24
 
25
  qg_advanced = pipeline(