Spaces:
Sleeping
Sleeping
from transformers import pipeline, T5Tokenizer, AutoModelForSeq2SeqLM | |
from .IQuestionGenerator import IQuestionGenerator | |
from backend.services.SentenceCheck import SentenceCheck | |
from backend.models.AIParamModel import AIParam | |
import torch | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"[QuestionGenerator] Using device: {device}") | |
# valhalla model with slow tokenizer | |
tokenizer_qg_simple = T5Tokenizer.from_pretrained("valhalla/t5-small-qg-hl") | |
model_qg_simple = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-small-qg-hl") | |
qg_simple = pipeline( | |
"text2text-generation", | |
model=model_qg_simple, | |
tokenizer=tokenizer_qg_simple, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
# iarfmoose model with slow tokenizer | |
tokenizer_qg_advanced = T5Tokenizer.from_pretrained("iarfmoose/t5-base-question-generator") | |
model_qg_advanced = AutoModelForSeq2SeqLM.from_pretrained("iarfmoose/t5-base-question-generator") | |
qg_advanced = pipeline( | |
"text2text-generation", | |
model=model_qg_advanced, | |
tokenizer=tokenizer_qg_advanced, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
sentenceCheck = SentenceCheck() | |
class QuestionGenerator(IQuestionGenerator): | |
def generate_questions_advance(self, text: str, aIParam: AIParam) -> list: | |
input_text = f"generate questions: {text}" | |
outputs = qg_advanced( | |
input_text, | |
max_length=aIParam.max_length, | |
num_return_sequences=aIParam.num_return_sequences, | |
do_sample=aIParam.do_sample, | |
top_k=aIParam.top_k, | |
top_p=aIParam.top_p, | |
temperature=aIParam.temperature | |
) | |
raw_sentences = [o["generated_text"] for o in outputs] | |
filtered = [s for s in raw_sentences if sentenceCheck.IsSentenceCorrect(s)] | |
return filtered | |
def generate_questions_simple(self, text: str, aIParam: AIParam) -> list: | |
input_text = f"generate questions: {text}" | |
outputs = qg_simple( | |
input_text, | |
max_length=aIParam.max_length, | |
num_return_sequences=aIParam.num_return_sequences, | |
do_sample=aIParam.do_sample, | |
top_k=aIParam.top_k, | |
top_p=aIParam.top_p, | |
temperature=aIParam.temperature | |
) | |
return [o["generated_text"] for o in outputs] | |