| ## Download some datasets | |
| ```shell | |
| curl https://raw.githubusercontent.com/tloen/alpaca-lora/main/alpaca_data_gpt4.json -o data/raw/alpaca_data_gpt4.json | |
| curl https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json -L -o data/raw/vicuna_cleaned.json | |
| curl https://github.com/teknium1/GPTeacher/blob/main/Instruct/gpt4-instruct-similarity-0.6-dataset.json?raw=true -L -o data/raw/gpt4-instruct-similarity-0.6-dataset.json | |
| curl https://github.com/teknium1/GPTeacher/blob/main/Roleplay/roleplay-similarity_0.6-instruct-dataset.json?raw=true -L -o data/raw/roleplay-similarity_0.6-instruct-dataset.json | |
| ``` | |
| ## Convert the JSON data files to JSONL. | |
| ```shell | |
| python3 ./scripts/alpaca_json_to_jsonl.py --input data/alpaca_data_gpt4.json > data/alpaca_data_gpt4.jsonl | |
| python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/vicuna_cleaned.json > data/vicuna_cleaned.jsonl | |
| python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/roleplay-similarity_0.6-instruct-dataset.json > data/roleplay-similarity_0.6-instruct-dataset.jsonl | |
| python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/gpt4-instruct-similarity-0.6-dataset.json > data/gpt4-instruct-similarity-0.6-dataset.jsonl | |
| ``` | |
| --- | |
| Using JSONL makes it easier to subset the data if you want a smaller training set, i.e get 2000 random examples. | |
| ```shell | |
| shuf -n2000 data/vicuna_cleaned.jsonl > data/vicuna_cleaned.subset0.jsonl | |
| ``` | |