| # Axolotl | |
| <div align="center"> | |
| <img src="image/axolotl.png" alt="axolotl" width="160"> | |
| <div> | |
| <p> | |
| <b>One repo to finetune them all! </b> | |
| </p> | |
| <p> | |
| Go ahead and axolotl questions!! | |
| </p> | |
| <img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit"> | |
| <img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main"> | |
| </div> | |
| </div> | |
| ## Axolotl supports | |
| | | fp16/fp32 | lora | qlora | gptq | gptq w/ lora | gptq w/flash attn | flash attn | xformers attn | | |
| |----------|:----------|:-----|-------|------|:-------------|-------------------|------------|---------------| | |
| | llama | β | β | β | β | β | β | β | β | | |
| | Pythia | β | β | β | β | β | β | β | β | | |
| | cerebras | β | β | β | β | β | β | β | β | | |
| | mpt | β | β | β | β | β | β | β | β | | |
| | falcon | β | β | β | β | β | β | β | β | | |
| | gpt-j | β | β | β | β | β | β | β | β | | |
| ## Quickstart β‘ | |
| **Requirements**: Python 3.9 and Pytorch 2.0. | |
| ```bash | |
| git clone https://github.com/OpenAccess-AI-Collective/axolotl | |
| pip3 install -e . | |
| pip3 install -U git+https://github.com/huggingface/peft.git | |
| accelerate config | |
| # finetune lora | |
| accelerate launch scripts/finetune.py examples/openllama-3b/lora.yml | |
| # inference | |
| accelerate launch scripts/finetune.py examples/openllama-3b/lora.yml \ | |
| --inference --lora_model_dir="./lora-out" | |
| ``` | |
| ## Installation | |
| ### Environment | |
| - Docker | |
| ```bash | |
| docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.9-cu118-2.0.0 | |
| ``` | |
| - `winglian/axolotl-runpod:main-py3.9-cu118-2.0.0`: for runpod | |
| - `winglian/axolotl-runpod:main-py3.9-cu118-2.0.0-gptq`: for gptq | |
| - `winglian/axolotl:dev`: dev branch (not usually up to date) | |
| Or run on the current files for development: | |
| ```sh | |
| docker compose up -d | |
| ``` | |
| - Conda/Pip venv | |
| 1. Install python **3.9** | |
| 2. Install pytorch stable https://pytorch.org/get-started/locally/ | |
| 3. Install python dependencies with ONE of the following: | |
| - Recommended, supports QLoRA, NO gptq/int4 support | |
| ```bash | |
| pip3 install -e . | |
| pip3 install -U git+https://github.com/huggingface/peft.git | |
| ``` | |
| - gptq/int4 support, NO QLoRA | |
| ```bash | |
| pip3 install -e .[gptq] | |
| ``` | |
| - same as above but not recommended | |
| ```bash | |
| pip3 install -e .[gptq_triton] | |
| ``` | |
| - LambdaLabs | |
| <details> | |
| <summary>Click to Expand</summary> | |
| 1. Install python | |
| ```bash | |
| sudo apt update | |
| sudo apt install -y python3.9 | |
| sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1 | |
| sudo update-alternatives --config python # pick 3.9 if given option | |
| python -V # should be 3.9 | |
| ``` | |
| 2. Install pip | |
| ```bash | |
| wget https://bootstrap.pypa.io/get-pip.py | |
| python get-pip.py | |
| ``` | |
| 3. Install torch | |
| ```bash | |
| pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 | |
| ``` | |
| 4. Axolotl | |
| ```bash | |
| git clone https://github.com/OpenAccess-AI-Collective/axolotl | |
| cd axolotl | |
| pip3 install -e . # change depend on needs | |
| pip3 install protobuf==3.20.3 | |
| pip3 install -U requests | |
| pip3 install -U --ignore-installed psutil | |
| pip3 install -U scipy | |
| pip3 install git+https://github.com/huggingface/peft.git # not for gptq | |
| ``` | |
| 5. Set path | |
| ```bash | |
| export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH | |
| ``` | |
| </details> | |
| ### Dataset | |
| Have dataset(s) in one of the following format (JSONL recommended): | |
| - `alpaca`: instruction; input(optional) | |
| ```json | |
| {"instruction": "...", "input": "...", "output": "..."} | |
| ``` | |
| - `sharegpt:chat`: conversations | |
| ```json | |
| {"conversations": [{"from": "...", "value": "..."}]} | |
| ``` | |
| - `completion`: raw corpus | |
| ```json | |
| {"text": "..."} | |
| ``` | |
| <details> | |
| <summary>See other formats</summary> | |
| - `jeopardy`: question and answer | |
| ```json | |
| {"question": "...", "category": "...", "answer": "..."} | |
| ``` | |
| - `oasst`: instruction | |
| ```json | |
| {"INSTRUCTION": "...", "RESPONSE": "..."} | |
| ``` | |
| - `gpteacher`: instruction; input(optional) | |
| ```json | |
| {"instruction": "...", "input": "...", "response": "..."} | |
| ``` | |
| - `reflection`: instruction with reflect; input(optional) | |
| ```json | |
| {"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."} | |
| ``` | |
| - `explainchoice`: question, choices, (solution OR explanation) | |
| ```json | |
| {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} | |
| ``` | |
| - `concisechoice`: question, choices, (solution OR explanation) | |
| ```json | |
| {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} | |
| ``` | |
| - `summarizetldr`: article and summary | |
| ```json | |
| {"article": "...", "summary": "..."} | |
| ``` | |
| - `alpaca_chat`: basic instruct for alpaca chat | |
| ```json | |
| {"instruction": "...", "input": "...", "response": "..."} | |
| ``` | |
| - `alpaca_chat.load_qa`: question and answer for alpaca chat | |
| ```json | |
| {"question": "...", "answer": "..."} | |
| ``` | |
| - `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers | |
| ```json | |
| {"instruction": "...", "input": "...", "response": "..."} | |
| ``` | |
| - `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai | |
| ```json | |
| {"message_1": "...", "message_2": "..."} | |
| ``` | |
| - `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct | |
| ```json | |
| {"system_prompt": "...", "question": "...", "response": "..."} | |
| ``` | |
| - `context_qa`: in context question answering from an article | |
| ```json | |
| {"article": "...", "question": "...", "answer": "..."} | |
| ``` | |
| - `context_qa.load_404`: in context question answering from an article, with default response for no answer from context | |
| ```json | |
| {"article": "...", "unanswerable_question": "..."} | |
| ``` | |
| - `creative_acr.load_answer`: instruction and revision | |
| ```json | |
| {"instruction": "...", "revision": "..."} | |
| ``` | |
| - `creative_acr.load_critique`: critique | |
| ```json | |
| {"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."} | |
| ``` | |
| - `creative_acr.load_revise`: critique and revise | |
| ```json | |
| {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."} | |
| ``` | |
| - `pygmalion`: pygmalion | |
| ```json | |
| {"conversations": [{"role": "...", "value": "..."}]} | |
| ``` | |
| - `sharegpt_simple.load_role`: conversations where `role` is used instead of `from` | |
| ```json | |
| {"conversations": [{"role": "...", "value": "..."}]} | |
| ``` | |
| - `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny | |
| ```json | |
| {"conversations": [{"title": "...", "text": "...", "explanation": "..."}]} | |
| ``` | |
| </details> | |
| #### How to add custom prompts | |
| 1. Add your method to a file in [prompt_strategies](src/axolotl/prompt_strategies). Please see other files as example. | |
| 2. Use your custom file name as the dataset type `<prompt_strategies_file>.load_<load_fn>`. | |
| Optionally, download some datasets, see [data/README.md](data/README.md) | |
| ### Config | |
| See sample configs in [configs](configs) folder or [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are: | |
| - model | |
| ```yaml | |
| base_model: ./llama-7b-hf # local or huggingface repo | |
| ``` | |
| Note: The code will load the right architecture. | |
| - dataset | |
| ```yaml | |
| sequence_len: 2048 # max token length for prompt | |
| # huggingface repo | |
| datasets: | |
| - path: vicgalle/alpaca-gpt4 | |
| type: alpaca # format from earlier | |
| # local | |
| datasets: | |
| - path: json | |
| data_files: data.jsonl # or json | |
| type: alpaca # format from earlier | |
| ``` | |
| - loading | |
| ```yaml | |
| load_in_4bit: true | |
| load_in_8bit: true | |
| bf16: true # require >=ampere | |
| fp16: true | |
| tf32: true # require >=ampere | |
| bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision) | |
| float16: true # use instead of fp16 when you don't want AMP | |
| ``` | |
| Note: Repo does not do 4-bit quantization. | |
| - lora | |
| ```yaml | |
| adapter: lora # qlora or leave blank for full finetune | |
| lora_r: 8 | |
| lora_alpha: 16 | |
| lora_dropout: 0.05 | |
| lora_target_modules: | |
| - q_proj | |
| - v_proj | |
| ``` | |
| <details> | |
| <summary>All yaml options</summary> | |
| ```yaml | |
| # this is the huggingface model that contains *.pt, *.safetensors, or *.bin files | |
| # this can also be a relative path to a model on disk | |
| base_model: ./llama-7b-hf | |
| # you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc) | |
| base_model_ignore_patterns: | |
| # if the base_model repo on hf hub doesn't include configuration .json files, | |
| # you can set that here, or leave this empty to default to base_model | |
| base_model_config: ./llama-7b-hf | |
| # Optional tokenizer configuration override in case you want to use a different tokenizer | |
| # than the one defined in the base model | |
| tokenizer_config: | |
| # If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too | |
| model_type: AutoModelForCausalLM | |
| # Corresponding tokenizer for the model AutoTokenizer is a good choice | |
| tokenizer_type: AutoTokenizer | |
| # Trust remote code for untrusted source | |
| trust_remote_code: | |
| # use_fast option for tokenizer loading from_pretrained, default to True | |
| tokenizer_use_fast: | |
| # whether you are training a 4-bit GPTQ quantized model | |
| gptq: true | |
| gptq_groupsize: 128 # group size | |
| gptq_model_v1: false # v1 or v2 | |
| # this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer | |
| load_in_8bit: true | |
| # use bitsandbytes 4 bit | |
| load_in_4bit: | |
| # Use CUDA bf16 | |
| bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere | |
| # Use CUDA fp16 | |
| fp16: true | |
| # Use CUDA tf32 | |
| tf32: true # require >=ampere | |
| # a list of one or more datasets to finetune the model with | |
| datasets: | |
| # hf dataset repo | "json" for local dataset, make sure to fill data_files | |
| - path: vicgalle/alpaca-gpt4 | |
| # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection] | |
| type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn> | |
| data_files: # path to source data files | |
| shards: # number of shards to split data into | |
| # axolotl attempts to save the dataset as an arrow after packing the data together so | |
| # subsequent training attempts load faster, relative path | |
| dataset_prepared_path: data/last_run_prepared | |
| # push prepared dataset to hub | |
| push_dataset_to_hub: # repo path | |
| # push checkpoints to hub | |
| hub_model_id: # repo path | |
| # whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets | |
| # required to be true when used in combination with `push_dataset_to_hub` | |
| hf_use_auth_token: # boolean | |
| # How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc | |
| val_set_size: 0.04 | |
| # Num shards for whole dataset | |
| dataset_shard_num: | |
| # Index of shard to use for whole dataset | |
| dataset_shard_idx: | |
| # the maximum length of an input to train with, this should typically be less than 2048 | |
| # as most models have a token/context limit of 2048 | |
| sequence_len: 2048 | |
| # max sequence length to concatenate training samples together up to | |
| # inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning | |
| max_packed_sequence_len: 1024 | |
| # if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model | |
| adapter: lora | |
| # if you already have a lora model trained that you want to load, put that here | |
| # lora hyperparameters | |
| lora_model_dir: | |
| lora_r: 8 | |
| lora_alpha: 16 | |
| lora_dropout: 0.05 | |
| lora_target_modules: | |
| - q_proj | |
| - v_proj | |
| # - k_proj | |
| # - o_proj | |
| # - gate_proj | |
| # - down_proj | |
| # - up_proj | |
| lora_target_linear: # if true, will target all linear layers | |
| lora_modules_to_save: | |
| # - embed_tokens | |
| # - lm_head | |
| lora_out_dir: | |
| lora_fan_in_fan_out: false | |
| # wandb configuration if you're using it | |
| wandb_mode: | |
| wandb_project: | |
| wandb_watch: | |
| wandb_run_id: | |
| wandb_log_model: # 'checkpoint' | |
| # where to save the finished model to | |
| output_dir: ./completed-model | |
| # training hyperparameters | |
| gradient_accumulation_steps: 1 | |
| micro_batch_size: 2 | |
| eval_batch_size: 2 | |
| num_epochs: 3 | |
| warmup_steps: 100 | |
| learning_rate: 0.00003 | |
| logging_steps: | |
| save_steps: | |
| eval_steps: | |
| # save model as safetensors (require safetensors package) | |
| save_safetensors: | |
| # whether to mask out or include the human's prompt from the training labels | |
| train_on_inputs: false | |
| # don't use this, leads to wonky training (according to someone on the internet) | |
| group_by_length: false | |
| # Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing | |
| gradient_checkpointing: false | |
| # stop training after this many evaluation losses have increased in a row | |
| # https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback | |
| early_stopping_patience: 3 | |
| # specify a scheduler and kwargs to use with the optimizer | |
| lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine | |
| lr_scheduler_kwargs: | |
| # for one_cycle optim | |
| lr_div_factor: # learning rate div factor | |
| # for log_sweep optim | |
| log_sweep_min_lr: | |
| log_sweep_max_lr: | |
| # specify optimizer | |
| optimizer: | |
| # specify weight decay | |
| weight_decay: | |
| # adamw hyperparams | |
| adam_beta1: | |
| adam_beta2: | |
| adam_epsilon: | |
| # Gradient clipping max norm | |
| max_grad_norm: | |
| # whether to bettertransformers | |
| flash_optimum: | |
| # whether to use xformers attention patch https://github.com/facebookresearch/xformers: | |
| xformers_attention: | |
| # whether to use flash attention patch https://github.com/HazyResearch/flash-attention: | |
| flash_attention: # require a100 for llama | |
| # whether to use scaled-dot-product attention | |
| # https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html | |
| sdp_attention: | |
| # Landmark attention (only llama) | |
| landmark_attention: | |
| # xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py | |
| # llama only | |
| xpos_rope: | |
| # resume from a specific checkpoint dir | |
| resume_from_checkpoint: | |
| # if resume_from_checkpoint isn't set and you simply want it to start where it left off | |
| # be careful with this being turned on between different models | |
| auto_resume_from_checkpoints: false | |
| # don't mess with this, it's here for accelerate and torchrun | |
| local_rank: | |
| # add or change special tokens | |
| special_tokens: | |
| # bos_token: "<s>" | |
| # eos_token: "</s>" | |
| # unk_token: "<unk>" | |
| # add extra tokens | |
| tokens: | |
| # FSDP | |
| fsdp: | |
| fsdp_config: | |
| # Deepspeed | |
| deepspeed: | |
| # Path to torch distx for optim 'adamw_anyprecision' | |
| torchdistx_path: | |
| # Set padding for data collator to 'longest' | |
| collator_pad_to_longest: | |
| # Debug mode | |
| debug: | |
| # Seed | |
| seed: | |
| # Allow overwrite yml config using from cli | |
| strict: | |
| ``` | |
| </details> | |
| ### Accelerate | |
| Configure accelerate | |
| ```bash | |
| accelerate config | |
| # Edit manually | |
| # nano ~/.cache/huggingface/accelerate/default_config.yaml | |
| ``` | |
| ### Train | |
| Run | |
| ```bash | |
| accelerate launch scripts/finetune.py configs/your_config.yml | |
| ``` | |
| ### Inference | |
| Pass the appropriate flag to the train command: | |
| - Pretrained LORA: | |
| ```bash | |
| --inference --lora_model_dir="./lora-output-dir" | |
| ``` | |
| - Full weights finetune: | |
| ```bash | |
| --inference --base_model="./completed-model" | |
| ``` | |
| - Full weights finetune w/ a prompt from a text file: | |
| ```bash | |
| cat /tmp/prompt.txt | python scripts/finetune.py configs/your_config.yml \ | |
| --base_model="./completed-model" --inference --prompter=None --load_in_8bit=True | |
| ``` | |
| ### Merge LORA to base | |
| Add below flag to train command above | |
| ```bash | |
| --merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False | |
| ``` | |
| If you run out of CUDA memory, you can try to merge in system RAM with | |
| ```bash | |
| CUDA_VISIBLE_DEVICES="" python3 scripts/finetune.py ... | |
| ``` | |
| ## Common Errors π§° | |
| > Cuda out of memory | |
| Please reduce any below | |
| - `micro_batch_size` | |
| - `eval_batch_size` | |
| - `gradient_accumulation_steps` | |
| - `sequence_len` | |
| > RuntimeError: expected scalar type Float but found Half | |
| Try set `fp16: true` | |
| > NotImplementedError: No operator found for `memory_efficient_attention_forward` ... | |
| Try to turn off xformers. | |
| ## Need help? πβοΈ | |
| Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you | |
| ## Badge β€π·οΈ | |
| Building something cool with Axolotl? Consider adding a badge to your model card. | |
| ```markdown | |
| [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) | |
| ``` | |
| [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) | |
| ## Community Showcase | |
| Open Access AI Collective | |
| - [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b) | |
| - [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b) | |
| - [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat) | |
| PocketDoc Labs | |
| - [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA) | |
| ## Contributing π€ | |
| Bugs? Please check for open issue else create a new [Issue](https://github.com/OpenAccess-AI-Collective/axolotl/issues/new). | |
| PRs are **greatly welcome**! | |
| Please run below to setup env | |
| ```bash | |
| pip3 install -r requirements-dev.txt -r requirements-tests.txt | |
| pre-commit install | |
| # test | |
| pytest tests/ | |
| ``` | |