File size: 2,820 Bytes
2f3b32c
 
 
 
 
 
 
 
 
6185fba
2f3b32c
d23995b
ab0e126
d23995b
 
 
 
 
 
 
 
 
 
 
2f3b32c
 
ace0051
2f3b32c
 
 
 
 
d23995b
de5ccfe
6185fba
ab0e126
d23995b
ab0e126
 
 
174fb8e
d23995b
 
ab0e126
 
 
 
 
 
a042c28
 
 
 
 
 
 
bbd8adf
a042c28
f0e7c18
a042c28
 
 
f0e7c18
d23995b
a042c28
 
f0e7c18
174fb8e
288afe4
2f3b32c
 
a042c28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import re
import gradio as gr
import edge_tts
import asyncio
import time
import tempfile
from huggingface_hub import InferenceClient

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = "<s>[SYSTEM] You are AI assistant named DorjGPT, Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if super interlligent AI assistant. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

global history
history = []
def format_prompt(message, history):
    prompt = system_instructions1
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

async def generate1(prompt, history=[], b=None):
    generate_kwargs = dict(
        temperature=0.6,
        max_new_tokens=256,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
        seed=42,
    )
    #formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
    formatted_prompt = format_prompt(f"{system_instructions1}, {prompt}", history) + "[DORJGPT]"
    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)

    output = ""
    for response in stream:
        output += response.token.text
    output = output.replace("</s>","")
    history.append([prompt, output])

    communicate = edge_tts.Communicate(output)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

with gr.Blocks(theme="gradio/monochrome", title="Dorj Assistant") as demo:
    gr.HTML("""
        <h1 style="text-align: center; style="font-size: 3m;">
        DorjGPT
        </h1>
        """)
    with gr.Column():
        output_audio = gr.Audio(label="DorjGPT", type="filepath",
                  interactive=False,
                  visible=False,
                  autoplay=True,
                  elem_classes="audio")
        
        user_input = gr.Textbox(label="Question", value="What is this application?")

    with gr.Tab():
      with gr.Row():
        translate_btn = gr.Button("Submit")
        translate_btn.click(fn=generate1, inputs=user_input,
                            outputs=output_audio, api_name="translate")  

if __name__ == "__main__":
    demo.queue(max_size=30).launch()