Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,9 +7,8 @@ import time
|
|
| 7 |
import tempfile
|
| 8 |
from huggingface_hub import InferenceClient
|
| 9 |
|
| 10 |
-
DESCRIPTION = """ # <center><b>
|
| 11 |
-
### <center>A personal Assistant
|
| 12 |
-
### <center>Currently It supports text input, But If this space completes 1k hearts than I starts working on Audio Input.</center>
|
| 13 |
"""
|
| 14 |
|
| 15 |
MORE = """ ## TRY Other Models
|
|
@@ -50,64 +49,12 @@ async def generate1(prompt):
|
|
| 50 |
await communicate.save(tmp_path)
|
| 51 |
yield tmp_path
|
| 52 |
|
| 53 |
-
client2 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
|
| 54 |
-
|
| 55 |
-
system_instructions2 = "<s>[SYSTEM] You are AI assistant named DorjGPT, Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if super interlligent AI assistant. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
| 56 |
-
|
| 57 |
-
async def generate2(prompt):
|
| 58 |
-
generate_kwargs = dict(
|
| 59 |
-
temperature=0.6,
|
| 60 |
-
max_new_tokens=512,
|
| 61 |
-
top_p=0.95,
|
| 62 |
-
repetition_penalty=1,
|
| 63 |
-
do_sample=True,
|
| 64 |
-
)
|
| 65 |
-
formatted_prompt = system_instructions2 + prompt + "[ASSISTANT]"
|
| 66 |
-
stream = client2.text_generation(
|
| 67 |
-
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
| 68 |
-
output = ""
|
| 69 |
-
for response in stream:
|
| 70 |
-
output += response.token.text
|
| 71 |
-
output = output.replace("</s>","")
|
| 72 |
-
|
| 73 |
-
communicate = edge_tts.Communicate(output)
|
| 74 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 75 |
-
tmp_path = tmp_file.name
|
| 76 |
-
await communicate.save(tmp_path)
|
| 77 |
-
yield tmp_path
|
| 78 |
-
|
| 79 |
-
client3 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
|
| 80 |
-
|
| 81 |
-
system_instructions3 = "[SYSTEM]The text provided is a request for a specific type of response from me, the virtual assistant. The request asks me to provide detailed and friendly responses as if I am the character Jarvis, inspired by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, my task is to generate responses that appear as if they are created by the user and not an AI-powered assistant.[USER]"
|
| 82 |
-
|
| 83 |
-
async def generate3(prompt):
|
| 84 |
-
generate_kwargs = dict(
|
| 85 |
-
temperature=0.6,
|
| 86 |
-
max_new_tokens=2048,
|
| 87 |
-
top_p=0.95,
|
| 88 |
-
repetition_penalty=1,
|
| 89 |
-
do_sample=True,
|
| 90 |
-
)
|
| 91 |
-
formatted_prompt = system_instructions3 + prompt + "[ASSISTANT]"
|
| 92 |
-
stream = client3.text_generation(
|
| 93 |
-
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
| 94 |
-
output = ""
|
| 95 |
-
for response in stream:
|
| 96 |
-
output += response.token.text
|
| 97 |
-
output = output.replace("</s>","")
|
| 98 |
-
|
| 99 |
-
communicate = edge_tts.Communicate(output)
|
| 100 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 101 |
-
tmp_path = tmp_file.name
|
| 102 |
-
await communicate.save(tmp_path)
|
| 103 |
-
yield tmp_path
|
| 104 |
-
|
| 105 |
with gr.Blocks(css="style.css") as demo:
|
| 106 |
gr.Markdown(DESCRIPTION)
|
| 107 |
with gr.Row():
|
| 108 |
user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
|
| 109 |
input_text = gr.Textbox(label="Input Text", elem_id="important")
|
| 110 |
-
output_audio = gr.Audio(label="
|
| 111 |
interactive=False,
|
| 112 |
autoplay=True,
|
| 113 |
elem_classes="audio")
|
|
|
|
| 7 |
import tempfile
|
| 8 |
from huggingface_hub import InferenceClient
|
| 9 |
|
| 10 |
+
DESCRIPTION = """ # <center><b>DorjGPT⚡</b></center>
|
| 11 |
+
### <center>A personal Assistant
|
|
|
|
| 12 |
"""
|
| 13 |
|
| 14 |
MORE = """ ## TRY Other Models
|
|
|
|
| 49 |
await communicate.save(tmp_path)
|
| 50 |
yield tmp_path
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
with gr.Blocks(css="style.css") as demo:
|
| 53 |
gr.Markdown(DESCRIPTION)
|
| 54 |
with gr.Row():
|
| 55 |
user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
|
| 56 |
input_text = gr.Textbox(label="Input Text", elem_id="important")
|
| 57 |
+
output_audio = gr.Audio(label="DorjGPT", type="filepath",
|
| 58 |
interactive=False,
|
| 59 |
autoplay=True,
|
| 60 |
elem_classes="audio")
|