File size: 2,296 Bytes
b7e8009
2f3b32c
 
e450c90
2f3b32c
 
e450c90
 
 
b7e8009
ab0e126
d23995b
 
e450c90
 
 
 
 
 
 
 
 
d23995b
e450c90
 
 
 
 
d23995b
e450c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0e126
 
 
 
 
e450c90
a042c28
 
 
 
 
 
 
bbd8adf
a042c28
f0e7c18
a042c28
 
 
f0e7c18
d23995b
a042c28
 
f0e7c18
e450c90
288afe4
2f3b32c
 
a042c28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import edge_tts
import tempfile
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("google/gemma-3-27b-it", token=os.getenv("TOKEN"))

global history
history = []
async def respond(
    message, 
    history=[],
    system_message="You are a Gemma, created by Google. You is a helpful assistant and always reply back in Mongolian, and only return Mongolian text.",
    max_tokens=512,
    temperature=0.001,
    top_p=0.95,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        
    communicate = edge_tts.Communicate(response, voice="mn-MN-BataaNeural")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path


with gr.Blocks(theme="gradio/monochrome", title="Dorj Assistant") as demo:
    gr.HTML("""
        <h1 style="text-align: center; style="font-size: 3m;">
        DorjGPT
        </h1>
        """)
    with gr.Column():
        output_audio = gr.Audio(label="DorjGPT", type="filepath",
                  interactive=False,
                  visible=False,
                  autoplay=True,
                  elem_classes="audio")
        
        user_input = gr.Textbox(label="Question", value="What is this application?")

    with gr.Tab():
      with gr.Row():
        translate_btn = gr.Button("Submit")
        translate_btn.click(fn=respond, inputs=user_input,
                            outputs=output_audio, api_name="translate")  

if __name__ == "__main__":
    demo.queue(max_size=30).launch()