Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import torch
|
2 |
from torch import nn, optim
|
3 |
from torch.utils.data import DataLoader, Dataset
|
4 |
-
from torchvision import transforms, datasets, models
|
5 |
from PIL import Image
|
6 |
import json
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
-
import shutil
|
10 |
|
11 |
# Paths
|
12 |
image_folder = "Images/"
|
@@ -96,27 +95,26 @@ def train_lora(image_folder, metadata):
|
|
96 |
if batch_idx % 10 == 0: # Log every 10 batches
|
97 |
print(f"Batch {batch_idx}, Loss: {loss.item()}")
|
98 |
|
99 |
-
# Save the trained model
|
100 |
-
|
101 |
-
torch.save(model.state_dict(),
|
102 |
-
print(f"Model saved
|
103 |
|
104 |
-
|
105 |
-
#
|
106 |
-
print(f"Training completed. The model is saved and ready for download at {save_path}.")
|
107 |
-
|
108 |
-
return f"Training completed. Download the model from: [Download Model](sandbox:/mnt/data/lora_model.pth)"
|
109 |
|
110 |
# Gradio App
|
111 |
def start_training_gradio():
|
112 |
print("Loading metadata and preparing dataset...")
|
113 |
metadata = load_metadata(metadata_file)
|
114 |
-
|
|
|
115 |
|
|
|
116 |
demo = gr.Interface(
|
117 |
fn=start_training_gradio,
|
118 |
inputs=None,
|
119 |
-
outputs=
|
120 |
title="Train LoRA Model",
|
121 |
description="Fine-tune a model using LoRA for consistent image generation."
|
122 |
)
|
|
|
1 |
import torch
|
2 |
from torch import nn, optim
|
3 |
from torch.utils.data import DataLoader, Dataset
|
4 |
+
from torch torchvision import transforms, datasets, models
|
5 |
from PIL import Image
|
6 |
import json
|
7 |
import os
|
8 |
import gradio as gr
|
|
|
9 |
|
10 |
# Paths
|
11 |
image_folder = "Images/"
|
|
|
95 |
if batch_idx % 10 == 0: # Log every 10 batches
|
96 |
print(f"Batch {batch_idx}, Loss: {loss.item()}")
|
97 |
|
98 |
+
# Save the trained model
|
99 |
+
model_path = "lora_model.pth"
|
100 |
+
torch.save(model.state_dict(), model_path)
|
101 |
+
print(f"Model saved as {model_path}")
|
102 |
|
103 |
+
print("Training completed.")
|
104 |
+
return model_path # Return the path of the saved model
|
|
|
|
|
|
|
105 |
|
106 |
# Gradio App
|
107 |
def start_training_gradio():
|
108 |
print("Loading metadata and preparing dataset...")
|
109 |
metadata = load_metadata(metadata_file)
|
110 |
+
model_path = train_lora(image_folder, metadata)
|
111 |
+
return model_path # This will return the model file path for download
|
112 |
|
113 |
+
# Gradio interface
|
114 |
demo = gr.Interface(
|
115 |
fn=start_training_gradio,
|
116 |
inputs=None,
|
117 |
+
outputs=gr.File(),
|
118 |
title="Train LoRA Model",
|
119 |
description="Fine-tune a model using LoRA for consistent image generation."
|
120 |
)
|