Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from PIL import Image
|
|
| 6 |
import json
|
| 7 |
import os
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
|
| 10 |
# Paths
|
| 11 |
image_folder = "Images/"
|
|
@@ -95,23 +96,22 @@ def train_lora(image_folder, metadata):
|
|
| 95 |
if batch_idx % 10 == 0: # Log every 10 batches
|
| 96 |
print(f"Batch {batch_idx}, Loss: {loss.item()}")
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
-
#
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
print(f"Model saved at {model_save_path}")
|
| 106 |
|
| 107 |
-
|
| 108 |
|
| 109 |
# Gradio App
|
| 110 |
def start_training_gradio():
|
| 111 |
print("Loading metadata and preparing dataset...")
|
| 112 |
metadata = load_metadata(metadata_file)
|
| 113 |
-
train_lora(image_folder, metadata)
|
| 114 |
-
return "Training completed. Check the model outputs!"
|
| 115 |
|
| 116 |
demo = gr.Interface(
|
| 117 |
fn=start_training_gradio,
|
|
|
|
| 6 |
import json
|
| 7 |
import os
|
| 8 |
import gradio as gr
|
| 9 |
+
import shutil
|
| 10 |
|
| 11 |
# Paths
|
| 12 |
image_folder = "Images/"
|
|
|
|
| 96 |
if batch_idx % 10 == 0: # Log every 10 batches
|
| 97 |
print(f"Batch {batch_idx}, Loss: {loss.item()}")
|
| 98 |
|
| 99 |
+
# Save the trained model to /mnt/data/ for Hugging Face Space to access
|
| 100 |
+
save_path = '/mnt/data/lora_model.pth'
|
| 101 |
+
torch.save(model.state_dict(), save_path)
|
| 102 |
+
print(f"Model saved at {save_path}")
|
| 103 |
|
| 104 |
+
# Move the file to a location where we can access it for download
|
| 105 |
+
# Here, /mnt/data is directly accessible from the Hugging Face Space interface
|
| 106 |
+
print(f"Training completed. The model is saved and ready for download at {save_path}.")
|
|
|
|
| 107 |
|
| 108 |
+
return f"Training completed. Download the model from: [Download Model](sandbox:/mnt/data/lora_model.pth)"
|
| 109 |
|
| 110 |
# Gradio App
|
| 111 |
def start_training_gradio():
|
| 112 |
print("Loading metadata and preparing dataset...")
|
| 113 |
metadata = load_metadata(metadata_file)
|
| 114 |
+
return train_lora(image_folder, metadata)
|
|
|
|
| 115 |
|
| 116 |
demo = gr.Interface(
|
| 117 |
fn=start_training_gradio,
|