erwold
Initial Commit
e152f3a
raw
history blame
18.9 kB
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
from huggingface_hub import snapshot_download
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
MODEL_ID = "Djrango/Qwen2vl-Flux"
MODEL_CACHE_DIR = "model_cache"
# 预下载所有模型
def download_models():
logger.info("Starting model download...")
try:
# 下载完整模型仓库
snapshot_download(
repo_id=MODEL_ID,
local_dir=MODEL_CACHE_DIR,
local_dir_use_symlinks=False
)
logger.info("Model download completed successfully")
except Exception as e:
logger.error(f"Error downloading models: {str(e)}")
raise
# 在脚本开始时下载模型
if not os.path.exists(MODEL_CACHE_DIR):
download_models()
# Add aspect ratio options
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxInterface:
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
self.device = device
self.dtype = torch.bfloat16
self.models = None
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
def load_models(self):
if self.models is not None:
return
logger.info("Starting model loading...")
# 1. 首先加载较小的模型到GPU
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
text_encoder = CLIPTextModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
).to(self.dtype).to(self.device)
text_encoder_two = T5EncoderModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
).to(self.dtype).to(self.device)
tokenizer_two = T5TokenizerFast.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2"))
# 2. 将大模型加载到CPU,但保持bfloat16精度
vae = AutoencoderKL.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/vae")
).to(self.dtype).cpu()
transformer = FluxTransformer2DModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
).to(self.dtype).cpu()
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
shift=1
)
# 3. Qwen2VL加载到CPU,保持bfloat16
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
).to(self.dtype).cpu()
# 4. 加载connector和embedder,保持bfloat16
connector = Qwen2Connector().to(self.dtype).cpu()
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
connector_state = torch.load(connector_path, map_location='cpu')
connector_state = {k.replace('module.', ''): v.to(self.dtype) for k, v in connector_state.items()}
connector.load_state_dict(connector_state)
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).cpu()
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
self.t5_context_embedder.load_state_dict(t5_embedder_state)
# 5. 设置所有模型为eval模式
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl,
connector, self.t5_context_embedder]:
model.requires_grad_(False)
model.eval()
logger.info("All models loaded successfully")
self.models = {
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'text_encoder_two': text_encoder_two,
'tokenizer_two': tokenizer_two,
'vae': vae,
'transformer': transformer,
'scheduler': scheduler,
'qwen2vl': qwen2vl,
'connector': connector
}
self.qwen2vl_processor = AutoProcessor.from_pretrained(
self.MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
self.pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
def move_to_device(self, model, device):
"""Helper function to move model to specified device"""
if hasattr(model, 'to'):
return model.to(self.dtype).to(device)
return model
def process_image(self, image):
"""Process image with Qwen2VL model"""
try:
# 1. 将Qwen2VL相关模型移到GPU
logger.info("Moving Qwen2VL models to GPU...")
self.models['qwen2vl'] = self.models['qwen2vl'].to(self.device)
self.models['connector'] = self.models['connector'].to(self.device)
logger.info("Qwen2VL models moved to GPU")
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
with torch.no_grad():
inputs = self.qwen2vl_processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt"
).to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = self.models['connector'](image_hidden_state)
# 保存结果到CPU
result = (image_hidden_state.cpu(), image_grid_thw)
# 2. 将Qwen2VL相关模型移回CPU
logger.info("Moving Qwen2VL models back to CPU...")
self.models['qwen2vl'] = self.models['qwen2vl'].cpu()
self.models['connector'] = self.models['connector'].cpu()
torch.cuda.empty_cache()
logger.info("Qwen2VL models moved to CPU and GPU cache cleared")
return result
except Exception as e:
logger.error(f"Error in process_image: {str(e)}")
raise
def resize_image(self, img, max_pixels=1050000):
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def compute_t5_text_embeddings(self, prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = self.models['tokenizer_two'](
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
prompt_embeds = self.t5_context_embedder.to(self.device)(prompt_embeds)
self.t5_context_embedder = self.t5_context_embedder.cpu()
return prompt_embeds
def compute_text_embeddings(self, prompt=""):
with torch.no_grad():
text_inputs = self.models['tokenizer'](
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder'](
text_inputs.input_ids,
output_hidden_states=False
)
pooled_prompt_embeds = prompt_embeds.pooler_output
return pooled_prompt_embeds
def generate(self, input_image, prompt="", guidance_scale=3.5,
num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
try:
logger.info(f"Starting generation with prompt: {prompt}")
if input_image is None:
raise ValueError("No input image provided")
if seed is not None:
torch.manual_seed(seed)
logger.info(f"Set random seed to: {seed}")
# 1. 使用Qwen2VL处理图像
logger.info("Processing input image with Qwen2VL...")
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
logger.info("Image processing completed")
# 2. 计算文本嵌入
logger.info("Computing text embeddings...")
pooled_prompt_embeds = self.compute_text_embeddings(prompt)
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
logger.info("Text embeddings computed")
# 3. 将Transformer和VAE移到GPU
logger.info("Moving Transformer and VAE to GPU...")
self.models['transformer'] = self.models['transformer'].to(self.device)
self.models['vae'] = self.models['vae'].to(self.device)
# 更新pipeline中的模型引用
self.pipeline.transformer = self.models['transformer']
self.pipeline.vae = self.models['vae']
logger.info("Models moved to GPU")
# 获取维度
width, height = ASPECT_RATIOS[aspect_ratio]
logger.info(f"Using dimensions: {width}x{height}")
# 4. 生成图像
try:
logger.info("Starting image generation...")
output_images = self.pipeline(
prompt_embeds=qwen2_hidden_state.to(self.device).repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
logger.info("Image generation completed")
# 5. 将Transformer和VAE移回CPU
logger.info("Moving models back to CPU...")
self.models['transformer'] = self.models['transformer'].cpu()
self.models['vae'] = self.models['vae'].cpu()
torch.cuda.empty_cache()
logger.info("Models moved to CPU and GPU cache cleared")
return output_images
except Exception as e:
raise RuntimeError(f"Error generating images: {str(e)}")
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Initialize the interface
interface = FluxInterface()
def process_request(input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
"""主处理函数,直接处理用户请求"""
try:
if interface.models is None:
interface.load_models()
return interface.generate(
input_image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images=num_images,
seed=seed,
aspect_ratio=aspect_ratio
)
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
max-width: 1200px;
margin: auto;
padding: 0 20px;
}
.header {
text-align: center;
margin: 20px 0 40px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 12px;
}
.param-row {
padding: 10px 0;
}
footer {
margin-top: 40px;
padding: 20px;
border-top: 1px solid #eee;
}
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown(
"""
<div class="header">
# 🎨 Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance
</div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Input Section
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="As Long As Possible...",
lines=3
)
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Sampling Steps",
info="More steps = better quality but slower"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Number of Images",
info="Generate multiple variations at once"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Set for reproducible results"
)
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
value="1:1",
info="Choose aspect ratio for generated images"
)
submit_btn = gr.Button(
"🎨 Generate Variations",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Output Section
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True,
preview=True
)
error_message = gr.Textbox(visible=False)
with gr.Row(elem_classes="footer"):
gr.Markdown("""
### Tips:
- 📸 Upload any image to get started
- 💡 Add an optional text prompt to guide the generation
- 🎯 Adjust guidance scale to control prompt influence
- ⚙️ Increase steps for higher quality
- 🎲 Use seeds for reproducible results
""")
submit_btn.click(
fn=process_request,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed,
aspect_ratio
],
outputs=[output_gallery],
show_progress=True
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0", # Listen on all network interfaces
server_port=7860, # Use a specific port
share=False, # Disable public URL sharing
)