erwold
Initial Commit
2645f74
raw
history blame
11.5 kB
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
MODEL_ID = "Djrango/Qwen2vl-Flux"
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxInterface:
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
self.device = device
self.dtype = torch.bfloat16
self.models = None
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
def load_models(self):
if self.models is not None:
return
# Load FLUX components
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder")
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2")
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
# Load VAE and transformer from flux folder
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae")
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
# Load Qwen2VL components from qwen2-vl folder
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl")
# Load connector and t5 embedder from qwen2-vl folder
connector = Qwen2Connector()
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location=self.device)
connector.load_state_dict(connector_state)
# Load T5 embedder
self.t5_context_embedder = nn.Linear(4096, 3072)
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location=self.device)
self.t5_context_embedder.load_state_dict(t5_embedder_state)
# Move models to device and set dtype
models = [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]
for model in models:
model.to(self.device).to(self.dtype)
model.eval()
self.models = {
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'text_encoder_two': text_encoder_two,
'tokenizer_two': tokenizer_two,
'vae': vae,
'transformer': transformer,
'scheduler': scheduler,
'qwen2vl': qwen2vl,
'connector': connector
}
# Initialize processor and pipeline
self.qwen2vl_processor = AutoProcessor.from_pretrained(
self.MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
self.pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
# [Previous methods remain unchanged...]
def process_image(self, image):
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
with torch.no_grad():
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = self.models['connector'](image_hidden_state)
return image_hidden_state, image_grid_thw
def compute_text_embeddings(self, prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = self.models['tokenizer_two'](
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
prompt_embeds = self.t5_context_embedder(prompt_embeds)
return prompt_embeds
def generate(self, input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None):
try:
if seed is not None:
torch.manual_seed(seed)
self.load_models()
# Process input image
input_image = self.resize_image(input_image)
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
pooled_prompt_embeds = self.compute_text_embeddings("")
# Get T5 embeddings if prompt is provided
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
# Generate images
output_images = self.pipeline(
prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images
return output_images
except Exception as e:
print(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Initialize the interface
interface = FluxInterface()
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
max-width: 1200px;
margin: auto;
padding: 0 20px;
}
.header {
text-align: center;
margin: 20px 0 40px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 12px;
}
.param-row {
padding: 10px 0;
}
footer {
margin-top: 40px;
padding: 20px;
border-top: 1px solid #eee;
}
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown(
"""
<div class="header">
# 🎨 Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance
</div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Input Section
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="Describe how you want to modify the image...",
lines=3
)
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Sampling Steps",
info="More steps = better quality but slower"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Number of Images",
info="Generate multiple variations at once"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Set for reproducible results"
)
submit_btn = gr.Button(
"🎨 Generate Variations",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Output Section
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True,
preview=True
)
with gr.Row(elem_classes="footer"):
gr.Markdown("""
### Tips:
- πŸ“Έ Upload any image to get started
- πŸ’‘ Add an optional text prompt to guide the generation
- 🎯 Adjust guidance scale to control prompt influence
- βš™οΈ Increase steps for higher quality
- 🎲 Use seeds for reproducible results
""")
# Set up the generation function
submit_btn.click(
fn=interface.generate,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed
],
outputs=output_gallery,
show_progress="minimal"
)
# Launch the app
if __name__ == "__main__":
demo.launch()