Spaces:
Runtime error
Runtime error
File size: 11,462 Bytes
49d4954 2645f74 49d4954 00a1ccb 49d4954 00a1ccb 49d4954 00a1ccb 49d4954 d800f84 a349a7f d800f84 a349a7f d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe 49d4954 d800f84 a349a7f d800f84 00a1ccb a349a7f d800f84 49d4954 af7a5be d800f84 49d4954 d800f84 49d4954 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
MODEL_ID = "Djrango/Qwen2vl-Flux"
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxInterface:
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
self.device = device
self.dtype = torch.bfloat16
self.models = None
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
def load_models(self):
if self.models is not None:
return
# Load FLUX components
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder")
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2")
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
# Load VAE and transformer from flux folder
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae")
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
# Load Qwen2VL components from qwen2-vl folder
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl")
# Load connector and t5 embedder from qwen2-vl folder
connector = Qwen2Connector()
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location=self.device)
connector.load_state_dict(connector_state)
# Load T5 embedder
self.t5_context_embedder = nn.Linear(4096, 3072)
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location=self.device)
self.t5_context_embedder.load_state_dict(t5_embedder_state)
# Move models to device and set dtype
models = [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]
for model in models:
model.to(self.device).to(self.dtype)
model.eval()
self.models = {
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'text_encoder_two': text_encoder_two,
'tokenizer_two': tokenizer_two,
'vae': vae,
'transformer': transformer,
'scheduler': scheduler,
'qwen2vl': qwen2vl,
'connector': connector
}
# Initialize processor and pipeline
self.qwen2vl_processor = AutoProcessor.from_pretrained(
self.MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
self.pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
# [Previous methods remain unchanged...]
def process_image(self, image):
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
with torch.no_grad():
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = self.models['connector'](image_hidden_state)
return image_hidden_state, image_grid_thw
def compute_text_embeddings(self, prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = self.models['tokenizer_two'](
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
prompt_embeds = self.t5_context_embedder(prompt_embeds)
return prompt_embeds
def generate(self, input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None):
try:
if seed is not None:
torch.manual_seed(seed)
self.load_models()
# Process input image
input_image = self.resize_image(input_image)
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
pooled_prompt_embeds = self.compute_text_embeddings("")
# Get T5 embeddings if prompt is provided
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
# Generate images
output_images = self.pipeline(
prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images
return output_images
except Exception as e:
print(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Initialize the interface
interface = FluxInterface()
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
max-width: 1200px;
margin: auto;
padding: 0 20px;
}
.header {
text-align: center;
margin: 20px 0 40px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 12px;
}
.param-row {
padding: 10px 0;
}
footer {
margin-top: 40px;
padding: 20px;
border-top: 1px solid #eee;
}
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown(
"""
<div class="header">
# π¨ Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance
</div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Input Section
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="Describe how you want to modify the image...",
lines=3
)
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Sampling Steps",
info="More steps = better quality but slower"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Number of Images",
info="Generate multiple variations at once"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Set for reproducible results"
)
submit_btn = gr.Button(
"π¨ Generate Variations",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Output Section
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True,
preview=True
)
with gr.Row(elem_classes="footer"):
gr.Markdown("""
### Tips:
- πΈ Upload any image to get started
- π‘ Add an optional text prompt to guide the generation
- π― Adjust guidance scale to control prompt influence
- βοΈ Increase steps for higher quality
- π² Use seeds for reproducible results
""")
# Set up the generation function
submit_btn.click(
fn=interface.generate,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed
],
outputs=output_gallery,
show_progress="minimal"
)
# Launch the app
if __name__ == "__main__":
demo.launch() |