File size: 11,462 Bytes
49d4954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645f74
 
49d4954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a1ccb
49d4954
00a1ccb
49d4954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a1ccb
 
49d4954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d800f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a349a7f
d800f84
 
 
 
 
 
 
 
a349a7f
d800f84
 
 
4236cfe
d800f84
4236cfe
d800f84
 
4236cfe
 
d800f84
 
 
 
 
 
 
 
 
4236cfe
 
 
 
 
d800f84
 
4236cfe
 
 
 
 
 
d800f84
 
4236cfe
d800f84
 
4236cfe
 
 
 
 
d800f84
 
4236cfe
 
d800f84
 
 
 
4236cfe
 
 
d800f84
4236cfe
d800f84
4236cfe
49d4954
d800f84
 
a349a7f
 
 
 
d800f84
 
 
 
 
00a1ccb
a349a7f
d800f84
 
 
 
 
 
 
 
 
 
49d4954
 
 
af7a5be
 
 
 
 
 
 
 
d800f84
 
49d4954
 
d800f84
49d4954
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn

MODEL_ID = "Djrango/Qwen2vl-Flux"

class Qwen2Connector(nn.Module):
    def __init__(self, input_dim=3584, output_dim=4096):
        super().__init__()
        self.linear = nn.Linear(input_dim, output_dim)
    
    def forward(self, x):
        return self.linear(x)

class FluxInterface:
    def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
        self.device = device
        self.dtype = torch.bfloat16
        self.models = None
        self.MODEL_ID = "Djrango/Qwen2vl-Flux"
        
    def load_models(self):
        if self.models is not None:
            return

        # Load FLUX components
        tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
        text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder")
        text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2")
        tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
        
        # Load VAE and transformer from flux folder
        vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae")
        transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer")
        scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
        
        # Load Qwen2VL components from qwen2-vl folder
        qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl")
        
        # Load connector and t5 embedder from qwen2-vl folder
        connector = Qwen2Connector()
        connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
        connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location=self.device)
        connector.load_state_dict(connector_state)
        
        # Load T5 embedder
        self.t5_context_embedder = nn.Linear(4096, 3072)
        t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
        t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location=self.device)
        self.t5_context_embedder.load_state_dict(t5_embedder_state)
        
        # Move models to device and set dtype
        models = [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]
        for model in models:
            model.to(self.device).to(self.dtype)
            model.eval()
        
        self.models = {
            'tokenizer': tokenizer,
            'text_encoder': text_encoder,
            'text_encoder_two': text_encoder_two,
            'tokenizer_two': tokenizer_two,
            'vae': vae,
            'transformer': transformer,
            'scheduler': scheduler,
            'qwen2vl': qwen2vl,
            'connector': connector
        }
        
        # Initialize processor and pipeline
        self.qwen2vl_processor = AutoProcessor.from_pretrained(
            self.MODEL_ID, 
            subfolder="qwen2-vl",
            min_pixels=256*28*28, 
            max_pixels=256*28*28
        )
        
        self.pipeline = FluxPipeline(
            transformer=transformer,
            scheduler=scheduler,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
        )

    # [Previous methods remain unchanged...]
    def process_image(self, image):
        message = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": "Describe this image."},
                ]
            }
        ]
        text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)

        with torch.no_grad():
            inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
            output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
            image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
            image_hidden_state = self.models['connector'](image_hidden_state)

        return image_hidden_state, image_grid_thw

    def compute_text_embeddings(self, prompt):
        """Compute T5 embeddings for text prompt"""
        if prompt == "":
            return None
            
        text_inputs = self.models['tokenizer_two'](
            prompt,
            padding="max_length",
            max_length=256,
            truncation=True,
            return_tensors="pt"
        ).to(self.device)
        
        prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
        prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
        prompt_embeds = self.t5_context_embedder(prompt_embeds)
        
        return prompt_embeds

    def generate(self, input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None):
        try:
            if seed is not None:
                torch.manual_seed(seed)
                
            self.load_models()
            
            # Process input image
            input_image = self.resize_image(input_image)
            qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
            pooled_prompt_embeds = self.compute_text_embeddings("")
            
            # Get T5 embeddings if prompt is provided
            t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
            
            # Generate images
            output_images = self.pipeline(
                prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
                pooled_prompt_embeds=pooled_prompt_embeds,
                t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
            ).images
            
            return output_images
            
        except Exception as e:
            print(f"Error during generation: {str(e)}")
            raise gr.Error(f"Generation failed: {str(e)}")

# Initialize the interface
interface = FluxInterface()

# Create Gradio interface
with gr.Blocks(
    theme=gr.themes.Soft(),
    css="""
        .container { 
            max-width: 1200px; 
            margin: auto; 
            padding: 0 20px;
        }
        .header { 
            text-align: center; 
            margin: 20px 0 40px 0;
            padding: 20px;
            background: #f7f7f7;
            border-radius: 12px;
        }
        .param-row {
            padding: 10px 0;
        }
        footer {
            margin-top: 40px;
            padding: 20px;
            border-top: 1px solid #eee;
        }
    """
) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown(
            """
            <div class="header">
                # 🎨 Qwen2vl-Flux Image Variation Demo
                Generate creative variations of your images with optional text guidance
            </div>
            """
        )
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                # Input Section
                input_image = gr.Image(
                    label="Upload Your Image",
                    type="pil",
                    height=384,
                    sources=["upload", "clipboard"]
                )
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        prompt = gr.Textbox(
                            label="Text Prompt (Optional)",
                            placeholder="Describe how you want to modify the image...",
                            lines=3
                        )
                        
                        with gr.Row(elem_classes="param-row"):
                            guidance = gr.Slider(
                                minimum=1,
                                maximum=10,
                                value=3.5,
                                step=0.5,
                                label="Guidance Scale",
                                info="Higher values follow prompt more closely"
                            )
                            steps = gr.Slider(
                                minimum=1,
                                maximum=50,
                                value=28,
                                step=1,
                                label="Sampling Steps",
                                info="More steps = better quality but slower"
                            )
                            
                        with gr.Row(elem_classes="param-row"):
                            num_images = gr.Slider(
                                minimum=1,
                                maximum=4,
                                value=2,
                                step=1,
                                label="Number of Images",
                                info="Generate multiple variations at once"
                            )
                            seed = gr.Number(
                                label="Random Seed",
                                value=None,
                                precision=0,
                                info="Set for reproducible results"
                            )
                
                submit_btn = gr.Button(
                    "🎨 Generate Variations",
                    variant="primary",
                    size="lg"
                )
            
            with gr.Column(scale=1):
                # Output Section
                output_gallery = gr.Gallery(
                    label="Generated Variations",
                    columns=2,
                    rows=2,
                    height=700,
                    object_fit="contain",
                    show_label=True,
                    allow_preview=True,
                    preview=True
                )
        
        with gr.Row(elem_classes="footer"):
            gr.Markdown("""
                ### Tips:
                - πŸ“Έ Upload any image to get started
                - πŸ’‘ Add an optional text prompt to guide the generation
                - 🎯 Adjust guidance scale to control prompt influence
                - βš™οΈ Increase steps for higher quality
                - 🎲 Use seeds for reproducible results
            """)
    
    # Set up the generation function
    submit_btn.click(
        fn=interface.generate,
        inputs=[
            input_image,
            prompt,
            guidance,
            steps,
            num_images,
            seed
        ],
        outputs=output_gallery,
        show_progress="minimal"
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()