Spaces:
Runtime error
Runtime error
from flask import Flask, jsonify, request | |
from pathlib import Path | |
import sys | |
import torch | |
import os | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline | |
import streamlit as st | |
# model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive | |
# pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda") | |
pipe = DiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
g_cuda = None | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[0] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) | |
app = Flask(__name__) | |
# @app.route('/', methods = ['GET', 'POST']) | |
# def home(): | |
# if(request.method == 'GET'): | |
# data = "Text2Image" | |
# return jsonify({'service': data}) | |
# @app.route("/", methods=["POST"]) | |
def generate(): | |
# prompt = request.form['prompt'] | |
# negative_prompt = request.form['Negative prompt'] | |
# num_samples = request.form['No. of samples'] | |
prompt = st.text_area(label = "prompt", key="pmpt") | |
negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt") | |
num_samples = st.number_input("No. of samples") | |
res = st.button("Generate", type="primary") | |
if res: | |
guidance_scale = 7.5 | |
num_inference_steps = 24 | |
height = 512 | |
width = 512 | |
g_cuda = torch.Generator(device='cuda') | |
seed = 52362 | |
g_cuda.manual_seed(seed) | |
# commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half") | |
with autocast("cuda"), torch.inference_mode(): | |
images = pipe( | |
prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=g_cuda | |
).images | |
return {"message": "successful"} | |
else: | |
st.write('<Enter parameters to generate image>') | |
# driver function | |
if __name__ == '__main__': | |
generate() |