Divyanshu04's picture
Test
7ce3041
raw
history blame
2.57 kB
from flask import Flask, jsonify, request
from pathlib import Path
import sys
import torch
import os
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline
import streamlit as st
# model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
# pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda")
pipe = DiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
g_cuda = None
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
app = Flask(__name__)
# @app.route('/', methods = ['GET', 'POST'])
# def home():
# if(request.method == 'GET'):
# data = "Text2Image"
# return jsonify({'service': data})
# @app.route("/", methods=["POST"])
def generate():
# prompt = request.form['prompt']
# negative_prompt = request.form['Negative prompt']
# num_samples = request.form['No. of samples']
prompt = st.text_area(label = "prompt", key="pmpt")
negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt")
num_samples = st.number_input("No. of samples")
res = st.button("Generate", type="primary")
if res:
guidance_scale = 7.5
num_inference_steps = 24
height = 512
width = 512
g_cuda = torch.Generator(device='cuda')
seed = 52362
g_cuda.manual_seed(seed)
# commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half")
with autocast("cuda"), torch.inference_mode():
images = pipe(
prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=g_cuda
).images
return {"message": "successful"}
else:
st.write('<Enter parameters to generate image>')
# driver function
if __name__ == '__main__':
generate()