Spaces:
Running
Running
#!/usr/bin/env python | |
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
import time | |
import numpy as np | |
import subprocess | |
import torch | |
import json | |
import uuid | |
import spaces | |
from typing import Tuple | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
from datetime import datetime | |
from theme import theme | |
from typing import Tuple | |
from mistralai import Mistral | |
from fastapi import FastAPI | |
app = FastAPI() | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
api_key = os.getenv("MISTRAL_KEY") | |
Mistralclient = Mistral(api_key=api_key) | |
def flip_image(x): | |
return np.fliplr(x) | |
def clear(): | |
return None | |
def change_tab(): | |
return gr.Tabs.update(selected=1) | |
def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=100, width=896, height=1152): | |
if prompt == "" or prompt == None: | |
return None | |
if lora_id.strip() == "" or lora_id == None: | |
lora_id = "black-forest-labs/FLUX.1-dev" | |
key = random.randint(0, 999) | |
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip() | |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
# prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
# print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {prompt}') | |
# If seed is -1, generate a random seed and use it | |
if seed == -1: | |
seed = random.randint(1, 1000000000) | |
# Prepare the payload for the API call, including width and height | |
payload = { | |
"inputs": prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed if seed != -1 else random.randint(1, 1000000000), | |
"strength": strength, | |
"parameters": { | |
"width": width, # Pass the width to the API | |
"height": height # Pass the height to the API | |
} | |
} | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') | |
return image, seed | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None | |
examples = [ | |
"a beautiful woman with blonde hair and blue eyes", | |
"a beautiful woman with brown hair and grey eyes", | |
"a beautiful woman with black hair and brown eyes", | |
] | |
def encode_image(image_path): | |
"""Encode the image to base64.""" | |
try: | |
# Open the image file | |
image = Image.open(image_path).convert("RGB") | |
# Resize the image to a height of 512 while maintaining the aspect ratio | |
base_height = 512 | |
h_percent = (base_height / float(image.size[1])) | |
w_size = int((float(image.size[0]) * float(h_percent))) | |
image = image.resize((w_size, base_height), Image.LANCZOS) | |
# Convert the image to a byte stream | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
return img_str | |
except FileNotFoundError: | |
print(f"Error: The file {image_path} was not found.") | |
return None | |
except Exception as e: # Add generic exception handling | |
print(f"Error: {e}") | |
return None | |
def feifeichat(image): | |
try: | |
model = "pixtral-large-2411" | |
# Define the messages for the chat | |
base64_image = encode_image(image) | |
messages = [{ | |
"role": | |
"user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": "Please provide a detailed description of this photo" | |
}, | |
{ | |
"type": "image_url", | |
"image_url": f"data:image/jpeg;base64,{base64_image}" | |
}, | |
], | |
"stream": False, | |
}] | |
partial_message = "" | |
for chunk in Mistralclient.chat.stream(model=model, messages=messages): | |
if chunk.data.choices[0].delta.content is not None: | |
partial_message = partial_message + chunk.data.choices[ | |
0].delta.content | |
yield partial_message | |
except Exception as e: # 添加通用异常处理 | |
print(f"Error: {e}") | |
return "Please upload a photo" | |
css = """ | |
footer{display:none !important} | |
""" | |
with gr.Blocks(theme=theme, css=css, elem_id="app-container") as app: | |
gr.HTML("<center><h6>🎨 FLUX.1-Dev with LoRA 🇬🇧</h6></center>") | |
with gr.Tabs() as tabs: | |
with gr.TabItem(label="Image To Prompt", visible=True, id=1): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture 🖼️",height=320,type="filepath") | |
submit_btn = gr.Button(value="Submit", variant='primary') | |
with gr.Column(): | |
output_text = gr.Textbox(label="Flux Prompt ✍️", show_copy_button = True) | |
clr_button =gr.Button("Clear 🗑️ ",variant="primary", elem_id="clear_button") | |
clr_button.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False) | |
submit_btn.click(feifeichat, [input_img], [output_text]) | |
with gr.TabItem(label="Text to Image", visible=True, id=0): | |
with gr.Column(elem_id="app-container"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Group(): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input") | |
with gr.Row(): | |
with gr.Accordion("🎨 Lora trigger words", open=False): | |
gr.Markdown(""" | |
- **Canopus-Pencil-Art-LoRA**: Pencil Art | |
- **Flux-Realism-FineDetailed**: Fine Detailed | |
- **Fashion-Hut-Modeling-LoRA**: Modeling | |
- **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic | |
- **Flux-Fine-Detail-LoRA**: Super Detail | |
- **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism | |
- **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic | |
- **Canopus-Pencil-Art-LoRA**: Pencil Art | |
- **SD3.5-Large-Photorealistic-LoRA**: photorealistic | |
- **Flux.1-Dev-LoRA-HDR-Realism**: HDR | |
- **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism | |
- **john-singer-sargent-style**: John Singer Sargent Style | |
- **alphonse-mucha-style**: Alphonse Mucha Style | |
- **ultra-realistic-illustration**: ultra realistic illustration | |
- **eye-catching**: eye-catching | |
- **john-constable-style**: John Constable Style | |
- **film-noir**: in the style of FLMNR | |
- **flux-lora-pro-headshot**: PROHEADSHOT | |
""") | |
with gr.Row(): | |
custom_lora = gr.Dropdown([" ", "prithivMLmods/Canopus-Pencil-Art-LoRA", "prithivMLmods/Flux-Realism-FineDetailed", "prithivMLmods/Fashion-Hut-Modeling-LoRA", "prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", "prithivMLmods/Flux-Fine-Detail-LoRA", "prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", "hugovntr/flux-schnell-realism", "fofr/sdxl-deep-down", "prithivMLmods/Canopus-LoRA-Flux-UltraRealism-2.0", "prithivMLmods/Canopus-Realism-LoRA", "prithivMLmods/Canopus-LoRA-Flux-FaceRealism", "prithivMLmods/SD3.5-Large-Photorealistic-LoRA", "prithivMLmods/Flux.1-Dev-LoRA-HDR-Realism", "prithivMLmods/Ton618-Epic-Realism-Flux-LoRA", "KappaNeuro/john-singer-sargent-style", "KappaNeuro/alphonse-mucha-style", "ntc-ai/SDXL-LoRA-slider.ultra-realistic-illustration", "ntc-ai/SDXL-LoRA-slider.eye-catching", "KappaNeuro/john-constable-style", "dvyio/flux-lora-film-noir", "dvyio/flux-lora-pro-headshot"], label="Custom LoRA",) | |
with gr.Row(): | |
with gr.Accordion("⚙️ Advanced Settings", open=False, elem_id="settings-container"): | |
negative_prompt = gr.Textbox(label="Negative Prompt", lines=5, placeholder="What should not be in the image", value=" (visible hand:1.3), (ugly:1.3), (duplicate:1.2), (morbid:1.1), (mutilated:1.1), out of frame, bad face, extra fingers, mutated hands, (poorly drawn hands:1.1), (poorly drawn face:1.3), (mutation:1.3), (deformed:1.3), blurry, (bad anatomy:1.1), (bad proportions:1.2), (extra limbs:1.1), cloned face, (disfigured:1.2), gross proportions, malformed limbs, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), fused fingers, too many fingers, (long neck:1.2), sketched by bad-artist, (bad-image-v2-39000:1.3) ") | |
with gr.Row(): | |
width = gr.Slider(label="Image Width", value=896, minimum=64, maximum=1216, step=32) | |
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32) | |
strength = gr.Slider(label="Prompt Strength", value=100, minimum=0, maximum=100, step=1) | |
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"]) | |
with gr.Row(): | |
with gr.Accordion("🫘Seed", open=False): | |
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output") | |
# Add a button to trigger the image generation | |
with gr.Row(): | |
text_button = gr.Button("Generate Image 🎨", variant='primary', elem_id="gen-button") | |
clear_prompt =gr.Button("Clear Prompt 🗑️",variant="primary", elem_id="clear_button") | |
clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False) | |
with gr.Group(): | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery") | |
with gr.Group(): | |
with gr.Row(): | |
gr.Examples( | |
examples = examples, | |
inputs = [text_prompt], | |
) | |
with gr.Group(): | |
with gr.Row(): | |
clear_results = gr.Button(value="Clear Image 🗑️", variant="primary", elem_id="clear_button") | |
clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False) | |
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output]) | |
with gr.TabItem(label="Flip Image", visible=True, id=2): | |
with gr.Row(): | |
image_input = gr.Image() | |
image_output = gr.Image(format="png") | |
with gr.Row(): | |
image_button = gr.Button("Run", variant='primary') | |
image_button.click(flip_image, inputs=image_input, outputs=image_output, concurrency_limit=2) | |
with gr.TabItem(label="Tips", visible=True, id=3): | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;"> | |
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2> | |
<ol style="padding-left: 1.5rem;"> | |
<li>Enter a detailed description of the image you want to create.</li> | |
<li>Adjust advanced settings if desired (tap to expand).</li> | |
<li>Tap "Generate Image" and wait for your creation!</li> | |
</ol> | |
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p> | |
</div> | |
""" | |
) | |
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters | |
if __name__ == "__main__": | |
app.launch(show_api=False, share=False) | |