Spaces:
Running
Running
File size: 14,613 Bytes
ace08fa e547b24 0b6f327 5c3de75 e547b24 5c3de75 f43eb5f e7ea28d bec43ec f43eb5f e547b24 5c3de75 f43eb5f b54de9c bec43ec aaf45f0 8d50bf7 e547b24 78539a4 23f7831 de32577 f43eb5f 9a5638a d0b5531 f43eb5f 5bd5e23 6f5a32e e547b24 c7accf3 143ca85 c7accf3 e547b24 40d7442 001cbbb 143ca85 9be63af e547b24 f43eb5f 79e0fd9 143ca85 e547b24 143ca85 3f2e57b 2d04fb1 26785ab 143ca85 e547b24 c50b0b7 e547b24 c50b0b7 f94e79d e547b24 6f5a32e e547b24 143ca85 e547b24 6f5a32e 143ca85 e547b24 6f5a32e e547b24 f43eb5f 40d7442 c50b0b7 40d7442 62f1152 aaf45f0 ce277d8 d0b5531 23f7831 d0b5531 b12b6dd ce277d8 c50b0b7 3c9286b 97c5fb1 d0b5531 97c5fb1 d0b5531 e7ea28d c50b0b7 90b9bb9 9e0a74d 9026664 9e0a74d 008a439 9e0a74d c7e9533 9e0a74d c7e9533 9e0a74d 13e2925 1b5284a 13e2925 9e0a74d c83d099 afd2e94 a36751a 9026664 e6f9032 a36751a 160ac3b 90b9bb9 160ac3b a36751a 160ac3b e6f9032 160ac3b a36751a 5bd5e23 9a5638a 5bd5e23 a9040cf 9a5638a a9040cf 5bd5e23 4341179 5bd5e23 c16e8c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
#!/usr/bin/env python
import gradio as gr
import requests
import io
import random
import os
import time
import numpy as np
import subprocess
import torch
import json
import uuid
import spaces
from typing import Tuple
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
from deep_translator import GoogleTranslator
from datetime import datetime
from theme import theme
from typing import Tuple
from mistralai import Mistral
from fastapi import FastAPI
app = FastAPI()
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
api_key = os.getenv("MISTRAL_KEY")
Mistralclient = Mistral(api_key=api_key)
def flip_image(x):
return np.fliplr(x)
def clear():
return None
def change_tab():
return gr.Tabs.update(selected=1)
def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=100, width=896, height=1152):
if prompt == "" or prompt == None:
return None
if lora_id.strip() == "" or lora_id == None:
lora_id = "black-forest-labs/FLUX.1-dev"
key = random.randint(0, 999)
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
# print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# If seed is -1, generate a random seed and use it
if seed == -1:
seed = random.randint(1, 1000000000)
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"parameters": {
"width": width, # Pass the width to the API
"height": height # Pass the height to the API
}
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image, seed
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
examples = [
"a beautiful woman with blonde hair and blue eyes",
"a beautiful woman with brown hair and grey eyes",
"a beautiful woman with black hair and brown eyes",
]
def encode_image(image_path):
"""Encode the image to base64."""
try:
# Open the image file
image = Image.open(image_path).convert("RGB")
# Resize the image to a height of 512 while maintaining the aspect ratio
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
# Convert the image to a byte stream
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
return None
except Exception as e: # Add generic exception handling
print(f"Error: {e}")
return None
def feifeichat(image):
try:
model = "pixtral-large-2411"
# Define the messages for the chat
base64_image = encode_image(image)
messages = [{
"role":
"user",
"content": [
{
"type": "text",
"text": "Please provide a detailed description of this photo"
},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}"
},
],
"stream": False,
}]
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content is not None:
partial_message = partial_message + chunk.data.choices[
0].delta.content
yield partial_message
except Exception as e: # 添加通用异常处理
print(f"Error: {e}")
return "Please upload a photo"
css = """
footer{display:none !important}
"""
with gr.Blocks(theme=theme, css=css, elem_id="app-container") as app:
gr.HTML("<center><h6>🎨 FLUX.1-Dev with LoRA 🇬🇧</h6></center>")
with gr.Tabs() as tabs:
with gr.TabItem(label="Image To Prompt", visible=True, id=1):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture 🖼️",height=320,type="filepath")
submit_btn = gr.Button(value="Submit", variant='primary')
with gr.Column():
output_text = gr.Textbox(label="Flux Prompt ✍️", show_copy_button = True)
clr_button =gr.Button("Clear 🗑️ ",variant="primary", elem_id="clear_button")
clr_button.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False)
submit_btn.click(feifeichat, [input_img], [output_text])
with gr.TabItem(label="Text to Image", visible=True, id=0):
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Group():
with gr.Row():
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("🎨 Lora trigger words", open=False):
gr.Markdown("""
- **Canopus-Pencil-Art-LoRA**: Pencil Art
- **Flux-Realism-FineDetailed**: Fine Detailed
- **Fashion-Hut-Modeling-LoRA**: Modeling
- **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic
- **Flux-Fine-Detail-LoRA**: Super Detail
- **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism
- **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic
- **Canopus-Pencil-Art-LoRA**: Pencil Art
- **SD3.5-Large-Photorealistic-LoRA**: photorealistic
- **Flux.1-Dev-LoRA-HDR-Realism**: HDR
- **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism
- **john-singer-sargent-style**: John Singer Sargent Style
- **alphonse-mucha-style**: Alphonse Mucha Style
- **ultra-realistic-illustration**: ultra realistic illustration
- **eye-catching**: eye-catching
- **john-constable-style**: John Constable Style
- **film-noir**: in the style of FLMNR
- **flux-lora-pro-headshot**: PROHEADSHOT
""")
with gr.Row():
custom_lora = gr.Dropdown([" ", "prithivMLmods/Canopus-Pencil-Art-LoRA", "prithivMLmods/Flux-Realism-FineDetailed", "prithivMLmods/Fashion-Hut-Modeling-LoRA", "prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", "prithivMLmods/Flux-Fine-Detail-LoRA", "prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", "hugovntr/flux-schnell-realism", "fofr/sdxl-deep-down", "prithivMLmods/Canopus-LoRA-Flux-UltraRealism-2.0", "prithivMLmods/Canopus-Realism-LoRA", "prithivMLmods/Canopus-LoRA-Flux-FaceRealism", "prithivMLmods/SD3.5-Large-Photorealistic-LoRA", "prithivMLmods/Flux.1-Dev-LoRA-HDR-Realism", "prithivMLmods/Ton618-Epic-Realism-Flux-LoRA", "KappaNeuro/john-singer-sargent-style", "KappaNeuro/alphonse-mucha-style", "ntc-ai/SDXL-LoRA-slider.ultra-realistic-illustration", "ntc-ai/SDXL-LoRA-slider.eye-catching", "KappaNeuro/john-constable-style", "dvyio/flux-lora-film-noir", "dvyio/flux-lora-pro-headshot"], label="Custom LoRA",)
with gr.Row():
with gr.Accordion("⚙️ Advanced Settings", open=False, elem_id="settings-container"):
negative_prompt = gr.Textbox(label="Negative Prompt", lines=5, placeholder="What should not be in the image", value=" (visible hand:1.3), (ugly:1.3), (duplicate:1.2), (morbid:1.1), (mutilated:1.1), out of frame, bad face, extra fingers, mutated hands, (poorly drawn hands:1.1), (poorly drawn face:1.3), (mutation:1.3), (deformed:1.3), blurry, (bad anatomy:1.1), (bad proportions:1.2), (extra limbs:1.1), cloned face, (disfigured:1.2), gross proportions, malformed limbs, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), fused fingers, too many fingers, (long neck:1.2), sketched by bad-artist, (bad-image-v2-39000:1.3) ")
with gr.Row():
width = gr.Slider(label="Image Width", value=896, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
strength = gr.Slider(label="Prompt Strength", value=100, minimum=0, maximum=100, step=1)
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
with gr.Row():
with gr.Accordion("🫘Seed", open=False):
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
# Add a button to trigger the image generation
with gr.Row():
text_button = gr.Button("Generate Image 🎨", variant='primary', elem_id="gen-button")
clear_prompt =gr.Button("Clear Prompt 🗑️",variant="primary", elem_id="clear_button")
clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)
with gr.Group():
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
with gr.Group():
with gr.Row():
gr.Examples(
examples = examples,
inputs = [text_prompt],
)
with gr.Group():
with gr.Row():
clear_results = gr.Button(value="Clear Image 🗑️", variant="primary", elem_id="clear_button")
clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output])
with gr.TabItem(label="Flip Image", visible=True, id=2):
with gr.Row():
image_input = gr.Image()
image_output = gr.Image(format="png")
with gr.Row():
image_button = gr.Button("Run", variant='primary')
image_button.click(flip_image, inputs=image_input, outputs=image_output, concurrency_limit=2)
with gr.TabItem(label="Tips", visible=True, id=3):
with gr.Row():
gr.Markdown(
"""
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
<ol style="padding-left: 1.5rem;">
<li>Enter a detailed description of the image you want to create.</li>
<li>Adjust advanced settings if desired (tap to expand).</li>
<li>Tap "Generate Image" and wait for your creation!</li>
</ol>
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
</div>
"""
)
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters
if __name__ == "__main__":
app.launch(show_api=False, share=False)
|