File size: 6,005 Bytes
e21bb58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65fa4a
e21bb58
c0d2be7
 
 
 
 
4caa211
3c7b0b3
e21bb58
 
 
 
 
 
 
 
 
 
ce66774
 
 
 
e21bb58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
from setup import *
import pandas as pd
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import Font
from agents import research_agent
from vectorstore import extract_urls, urls_classify_list, clean_and_extract_html_data
from usecase_agent import usecase_agent_func, vectorstore_writing
from feasibility_agent import feasibility_agent_func



# Function to create Excel file
def create_excel(df):
    # Create a new Excel workbook and select the active sheet
    wb = Workbook()
    ws = wb.active
    ws.title = "Use Cases"

    # Define and write headers to the Excel sheet
    headers = ['Use Case', 'Description', 'URLs']
    ws.append(headers)

    # Write data rows
    for _, row in df.iterrows():
        try:
            use_case = row['use_case']
            description = row['description']
            urls = row['urls_list']

            ws.append([use_case, description, None])  # Add use case and description
            if urls:
                for url_index, url in enumerate(urls):
                    cell = ws.cell(row=ws.max_row, column=3)  # URLs go into the third column
                    cell.value = url
                    cell.hyperlink = url
                    cell.font = Font(color="0000FF", underline="single")
                    
                    # Add a new row for additional URLs
                    if url_index < len(urls) - 1:
                        ws.append([None, None, None])
        except KeyError as e:
            print(f"Missing key in DataFrame row: {e}")
        except Exception as e:
            print(f"Unexpected error while processing row: {e}")

    excel_file_path = "GenAI_use_cases_feasibility.xlsx"
    wb.save(excel_file_path)
    return excel_file_path


# Function to handle the report and create the DataFrame
def pd_creation(report):
    # Assuming feasibility_agent_func returns a dictionary
    pd_dict = feasibility_agent_func(report)
    
    # Create the DataFrame from the dictionary
    df = pd.DataFrame(pd_dict)
    
    # Convert the dataframe to the format expected by Gradio (list of lists)
    data = df.values.tolist()  # This creates a list of lists from the dataframe
    
    # Create the Excel file and return its path
    excel_file_path = create_excel(df)  # Create the Excel file and get its path
    
    return data, excel_file_path  # Return the formatted data and the Excel file path


# Main function that handles the user query and generates the report
def main(user_input):
    # Research Agent
    agentstate_result = research_agent(user_input)

    # Vector Store
    urls, content = extract_urls(agentstate_result)
    pdf_urls, html_urls = urls_classify_list(urls)
    html_docs = clean_and_extract_html_data(html_urls)

    # Writing vector store (not explicitly defined in your example)
    vectorstore_writing(html_docs)

    # Use-case agent
    company_name = agentstate_result['company']
    industry_name = agentstate_result['industry']

    if company_name:
        topic = f'GenAI Usecases in {company_name} and {industry_name} industry. Explore {company_name} GenAI applications, key offerings, strategic focus areas, competitors, and market share.'
    else:
        topic = f'GenAI Usecases in {industry_name}. Explore {industry_name} GenAI applications, trends, challenges, and opportunities.'
    max_analysts = 3

    report = usecase_agent_func(topic, max_analysts)
    pd_dict, excel_file_path = pd_creation(report)
    
    # Save the report as a markdown file
    report_file_path = "generated_report.md"
    with open(report_file_path, "w") as f:
        f.write(report)
    
    return report, report_file_path , excel_file_path


# Example queries
examples = [
    "AI in healthcare industry",
    "How is the retail industry leveraging AI and ML?",
    "AI applications in automotive manufacturing"
]


# Creating the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    # Header section
    gr.HTML("<center><h1>UseCaseGenie - Discover GenAI Use cases for your company and Industry! πŸ€–πŸ§ž.</h1><center>") 
    gr.Markdown("""#### This GenAI Assistant πŸ€– helps you discover and explore Generative AI use cases for your company and industry. 
      You can download the generated use case report as a <b>Markdown file</b> and a <b>Feasibility Excel file</b> to gain insights and explore relevant GenAI applications.
      ### <b>Steps:</b>
      1. <b>Enter your query</b> regarding any company or industry.  
      2. <b>Click on the 'Submit' button</b> and wait for the GenAI assistant to generate the report.  
      3. <b>Download the generated report and Excel file.<b> 
      4. Explore the GenAI use cases and URLs for further analysis.""")
    gr.Markdown("**Note:** The app demo may occasionally show errors due to rate limits of the underlying language model (LLM). If you encounter an error, please try again later. If the problem persists please raise issue. Thank you for your understanding!")

    # Input for the user query
    with gr.Row():
        user_input = gr.Textbox(label="Enter your Query", placeholder='Type_here...')

    # Buttons for submitting and downloading
    with gr.Row():
        submit_button = gr.Button("Submit")
        clear_btn = gr.ClearButton([user_input], value='Clear')

    # Examples to help users with inputs
    with gr.Row():  
        gr.Examples(examples=examples, inputs=user_input)
    
    # File download buttons
    with gr.Row():
        # Create a downloadable markdown file
        download_report_button = gr.File(label="Usecases Report")    

        # Create a downloadable Excel file
        download_excel_button = gr.File(label="Feasibility Excel File")   

    # Display report in Markdown format
    with gr.Row():
        report_output = gr.Markdown()

    submit_button.click(main, inputs=[user_input], outputs=[report_output, download_report_button,download_excel_button])

# Run the interface
demo.launch()