Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,154 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from setup import *
|
3 |
-
import pandas as pd
|
4 |
-
from openpyxl import Workbook
|
5 |
-
from openpyxl.utils.dataframe import dataframe_to_rows
|
6 |
-
from openpyxl.styles import Font
|
7 |
-
from agents import research_agent
|
8 |
-
from vectorstore import extract_urls, urls_classify_list, clean_and_extract_html_data
|
9 |
-
from usecase_agent import usecase_agent_func, vectorstore_writing
|
10 |
-
from feasibility_agent import feasibility_agent_func
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# Function to create Excel file
|
15 |
-
def create_excel(df):
|
16 |
-
# Create a new Excel workbook and select the active sheet
|
17 |
-
wb = Workbook()
|
18 |
-
ws = wb.active
|
19 |
-
ws.title = "Use Cases"
|
20 |
-
|
21 |
-
# Define and write headers to the Excel sheet
|
22 |
-
headers = ['Use Case', 'Description', 'URLs']
|
23 |
-
ws.append(headers)
|
24 |
-
|
25 |
-
# Write data rows
|
26 |
-
for _, row in df.iterrows():
|
27 |
-
try:
|
28 |
-
use_case = row['use_case']
|
29 |
-
description = row['description']
|
30 |
-
urls = row['urls_list']
|
31 |
-
|
32 |
-
ws.append([use_case, description, None]) # Add use case and description
|
33 |
-
if urls:
|
34 |
-
for url_index, url in enumerate(urls):
|
35 |
-
cell = ws.cell(row=ws.max_row, column=3) # URLs go into the third column
|
36 |
-
cell.value = url
|
37 |
-
cell.hyperlink = url
|
38 |
-
cell.font = Font(color="0000FF", underline="single")
|
39 |
-
|
40 |
-
# Add a new row for additional URLs
|
41 |
-
if url_index < len(urls) - 1:
|
42 |
-
ws.append([None, None, None])
|
43 |
-
except KeyError as e:
|
44 |
-
print(f"Missing key in DataFrame row: {e}")
|
45 |
-
except Exception as e:
|
46 |
-
print(f"Unexpected error while processing row: {e}")
|
47 |
-
|
48 |
-
excel_file_path = "GenAI_use_cases_feasibility.xlsx"
|
49 |
-
wb.save(excel_file_path)
|
50 |
-
return excel_file_path
|
51 |
-
|
52 |
-
|
53 |
-
# Function to handle the report and create the DataFrame
|
54 |
-
def pd_creation(report):
|
55 |
-
# Assuming feasibility_agent_func returns a dictionary
|
56 |
-
pd_dict = feasibility_agent_func(report)
|
57 |
-
|
58 |
-
# Create the DataFrame from the dictionary
|
59 |
-
df = pd.DataFrame(pd_dict)
|
60 |
-
|
61 |
-
# Convert the dataframe to the format expected by Gradio (list of lists)
|
62 |
-
data = df.values.tolist() # This creates a list of lists from the dataframe
|
63 |
-
|
64 |
-
# Create the Excel file and return its path
|
65 |
-
excel_file_path = create_excel(df) # Create the Excel file and get its path
|
66 |
-
|
67 |
-
return data, excel_file_path # Return the formatted data and the Excel file path
|
68 |
-
|
69 |
-
|
70 |
-
# Main function that handles the user query and generates the report
|
71 |
-
def main(user_input):
|
72 |
-
# Research Agent
|
73 |
-
agentstate_result = research_agent(user_input)
|
74 |
-
|
75 |
-
# Vector Store
|
76 |
-
urls, content = extract_urls(agentstate_result)
|
77 |
-
pdf_urls, html_urls = urls_classify_list(urls)
|
78 |
-
html_docs = clean_and_extract_html_data(html_urls)
|
79 |
-
|
80 |
-
# Writing vector store (not explicitly defined in your example)
|
81 |
-
vectorstore_writing(html_docs)
|
82 |
-
|
83 |
-
# Use-case agent
|
84 |
-
company_name = agentstate_result['company']
|
85 |
-
industry_name = agentstate_result['industry']
|
86 |
-
|
87 |
-
if company_name:
|
88 |
-
topic = f'GenAI Usecases in {company_name} and {industry_name} industry. Explore {company_name} GenAI applications, key offerings, strategic focus areas, competitors, and market share.'
|
89 |
-
else:
|
90 |
-
topic = f'GenAI Usecases in {industry_name}. Explore {industry_name} GenAI applications, trends, challenges, and opportunities.'
|
91 |
-
max_analysts = 3
|
92 |
-
|
93 |
-
report = usecase_agent_func(topic, max_analysts)
|
94 |
-
pd_dict, excel_file_path = pd_creation(report)
|
95 |
-
|
96 |
-
# Save the report as a markdown file
|
97 |
-
report_file_path = "generated_report.md"
|
98 |
-
with open(report_file_path, "w") as f:
|
99 |
-
f.write(report)
|
100 |
-
|
101 |
-
return report, report_file_path , excel_file_path
|
102 |
-
|
103 |
-
|
104 |
-
# Example queries
|
105 |
-
examples = [
|
106 |
-
"AI in healthcare industry",
|
107 |
-
"How is the retail industry leveraging AI and ML?",
|
108 |
-
"AI applications in automotive manufacturing"
|
109 |
-
]
|
110 |
-
|
111 |
-
|
112 |
-
# Creating the Gradio interface
|
113 |
-
with gr.Blocks(theme=gr.themes.Soft(
|
114 |
-
# Header section
|
115 |
-
gr.HTML("<center><h1>UseCaseGenie - Discover GenAI Use cases for your company and Industry! π€π§βπ³.</h1><center>")
|
116 |
-
gr.Markdown("""#### This GenAI Assistant π€ helps you discover and explore Generative AI use cases for your company and industry.
|
117 |
-
You can download the generated use case report as a <b>Markdown file</b> to gain insights and explore relevant GenAI applications.
|
118 |
-
### <b>Steps:</b>
|
119 |
-
1. <b>Enter your query</b> regarding any company or industry.
|
120 |
-
2. <b>Click on the 'Submit' button</b> and wait for the GenAI assistant to generate the report.
|
121 |
-
3. <b>Download the generated report<b>
|
122 |
-
4. Explore the GenAI use cases and URLs for further analysis.
|
123 |
-
""")
|
124 |
-
|
125 |
-
|
126 |
-
# Input for the user query
|
127 |
-
with gr.Row():
|
128 |
-
user_input = gr.Textbox(label="Enter your Query", placeholder='Type_here...')
|
129 |
-
|
130 |
-
# Examples to help users with inputs
|
131 |
-
with gr.Row():
|
132 |
-
gr.Examples(examples=examples, inputs=user_input)
|
133 |
-
|
134 |
-
# Buttons for submitting and downloading
|
135 |
-
with gr.Row():
|
136 |
-
submit_button = gr.Button("Submit")
|
137 |
-
clear_btn = gr.ClearButton([user_input], value='Clear')
|
138 |
-
|
139 |
-
# File download buttons
|
140 |
-
with gr.Row():
|
141 |
-
# Create a downloadable markdown file
|
142 |
-
download_report_button = gr.File(label="Usecases Report")
|
143 |
-
|
144 |
-
# Create a downloadable Excel file
|
145 |
-
download_excel_button = gr.File(label="Feasibility Excel File")
|
146 |
-
|
147 |
-
# Display report in Markdown format
|
148 |
-
with gr.Row():
|
149 |
-
report_output = gr.Markdown()
|
150 |
-
|
151 |
-
submit_button.click(main, inputs=[user_input], outputs=[report_output, download_report_button,download_excel_button])
|
152 |
-
|
153 |
-
# Run the interface
|
154 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from setup import *
|
3 |
+
import pandas as pd
|
4 |
+
from openpyxl import Workbook
|
5 |
+
from openpyxl.utils.dataframe import dataframe_to_rows
|
6 |
+
from openpyxl.styles import Font
|
7 |
+
from agents import research_agent
|
8 |
+
from vectorstore import extract_urls, urls_classify_list, clean_and_extract_html_data
|
9 |
+
from usecase_agent import usecase_agent_func, vectorstore_writing
|
10 |
+
from feasibility_agent import feasibility_agent_func
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Function to create Excel file
|
15 |
+
def create_excel(df):
|
16 |
+
# Create a new Excel workbook and select the active sheet
|
17 |
+
wb = Workbook()
|
18 |
+
ws = wb.active
|
19 |
+
ws.title = "Use Cases"
|
20 |
+
|
21 |
+
# Define and write headers to the Excel sheet
|
22 |
+
headers = ['Use Case', 'Description', 'URLs']
|
23 |
+
ws.append(headers)
|
24 |
+
|
25 |
+
# Write data rows
|
26 |
+
for _, row in df.iterrows():
|
27 |
+
try:
|
28 |
+
use_case = row['use_case']
|
29 |
+
description = row['description']
|
30 |
+
urls = row['urls_list']
|
31 |
+
|
32 |
+
ws.append([use_case, description, None]) # Add use case and description
|
33 |
+
if urls:
|
34 |
+
for url_index, url in enumerate(urls):
|
35 |
+
cell = ws.cell(row=ws.max_row, column=3) # URLs go into the third column
|
36 |
+
cell.value = url
|
37 |
+
cell.hyperlink = url
|
38 |
+
cell.font = Font(color="0000FF", underline="single")
|
39 |
+
|
40 |
+
# Add a new row for additional URLs
|
41 |
+
if url_index < len(urls) - 1:
|
42 |
+
ws.append([None, None, None])
|
43 |
+
except KeyError as e:
|
44 |
+
print(f"Missing key in DataFrame row: {e}")
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Unexpected error while processing row: {e}")
|
47 |
+
|
48 |
+
excel_file_path = "GenAI_use_cases_feasibility.xlsx"
|
49 |
+
wb.save(excel_file_path)
|
50 |
+
return excel_file_path
|
51 |
+
|
52 |
+
|
53 |
+
# Function to handle the report and create the DataFrame
|
54 |
+
def pd_creation(report):
|
55 |
+
# Assuming feasibility_agent_func returns a dictionary
|
56 |
+
pd_dict = feasibility_agent_func(report)
|
57 |
+
|
58 |
+
# Create the DataFrame from the dictionary
|
59 |
+
df = pd.DataFrame(pd_dict)
|
60 |
+
|
61 |
+
# Convert the dataframe to the format expected by Gradio (list of lists)
|
62 |
+
data = df.values.tolist() # This creates a list of lists from the dataframe
|
63 |
+
|
64 |
+
# Create the Excel file and return its path
|
65 |
+
excel_file_path = create_excel(df) # Create the Excel file and get its path
|
66 |
+
|
67 |
+
return data, excel_file_path # Return the formatted data and the Excel file path
|
68 |
+
|
69 |
+
|
70 |
+
# Main function that handles the user query and generates the report
|
71 |
+
def main(user_input):
|
72 |
+
# Research Agent
|
73 |
+
agentstate_result = research_agent(user_input)
|
74 |
+
|
75 |
+
# Vector Store
|
76 |
+
urls, content = extract_urls(agentstate_result)
|
77 |
+
pdf_urls, html_urls = urls_classify_list(urls)
|
78 |
+
html_docs = clean_and_extract_html_data(html_urls)
|
79 |
+
|
80 |
+
# Writing vector store (not explicitly defined in your example)
|
81 |
+
vectorstore_writing(html_docs)
|
82 |
+
|
83 |
+
# Use-case agent
|
84 |
+
company_name = agentstate_result['company']
|
85 |
+
industry_name = agentstate_result['industry']
|
86 |
+
|
87 |
+
if company_name:
|
88 |
+
topic = f'GenAI Usecases in {company_name} and {industry_name} industry. Explore {company_name} GenAI applications, key offerings, strategic focus areas, competitors, and market share.'
|
89 |
+
else:
|
90 |
+
topic = f'GenAI Usecases in {industry_name}. Explore {industry_name} GenAI applications, trends, challenges, and opportunities.'
|
91 |
+
max_analysts = 3
|
92 |
+
|
93 |
+
report = usecase_agent_func(topic, max_analysts)
|
94 |
+
pd_dict, excel_file_path = pd_creation(report)
|
95 |
+
|
96 |
+
# Save the report as a markdown file
|
97 |
+
report_file_path = "generated_report.md"
|
98 |
+
with open(report_file_path, "w") as f:
|
99 |
+
f.write(report)
|
100 |
+
|
101 |
+
return report, report_file_path , excel_file_path
|
102 |
+
|
103 |
+
|
104 |
+
# Example queries
|
105 |
+
examples = [
|
106 |
+
"AI in healthcare industry",
|
107 |
+
"How is the retail industry leveraging AI and ML?",
|
108 |
+
"AI applications in automotive manufacturing"
|
109 |
+
]
|
110 |
+
|
111 |
+
|
112 |
+
# Creating the Gradio interface
|
113 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
114 |
+
# Header section
|
115 |
+
gr.HTML("<center><h1>UseCaseGenie - Discover GenAI Use cases for your company and Industry! π€π§βπ³.</h1><center>")
|
116 |
+
gr.Markdown("""#### This GenAI Assistant π€ helps you discover and explore Generative AI use cases for your company and industry.
|
117 |
+
You can download the generated use case report as a <b>Markdown file</b> to gain insights and explore relevant GenAI applications.
|
118 |
+
### <b>Steps:</b>
|
119 |
+
1. <b>Enter your query</b> regarding any company or industry.
|
120 |
+
2. <b>Click on the 'Submit' button</b> and wait for the GenAI assistant to generate the report.
|
121 |
+
3. <b>Download the generated report<b>
|
122 |
+
4. Explore the GenAI use cases and URLs for further analysis.
|
123 |
+
""")
|
124 |
+
|
125 |
+
|
126 |
+
# Input for the user query
|
127 |
+
with gr.Row():
|
128 |
+
user_input = gr.Textbox(label="Enter your Query", placeholder='Type_here...')
|
129 |
+
|
130 |
+
# Examples to help users with inputs
|
131 |
+
with gr.Row():
|
132 |
+
gr.Examples(examples=examples, inputs=user_input)
|
133 |
+
|
134 |
+
# Buttons for submitting and downloading
|
135 |
+
with gr.Row():
|
136 |
+
submit_button = gr.Button("Submit")
|
137 |
+
clear_btn = gr.ClearButton([user_input], value='Clear')
|
138 |
+
|
139 |
+
# File download buttons
|
140 |
+
with gr.Row():
|
141 |
+
# Create a downloadable markdown file
|
142 |
+
download_report_button = gr.File(label="Usecases Report")
|
143 |
+
|
144 |
+
# Create a downloadable Excel file
|
145 |
+
download_excel_button = gr.File(label="Feasibility Excel File")
|
146 |
+
|
147 |
+
# Display report in Markdown format
|
148 |
+
with gr.Row():
|
149 |
+
report_output = gr.Markdown()
|
150 |
+
|
151 |
+
submit_button.click(main, inputs=[user_input], outputs=[report_output, download_report_button,download_excel_button])
|
152 |
+
|
153 |
+
# Run the interface
|
154 |
+
demo.launch()
|