Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from module import preprocessing_pipeline, conversational_rag
|
3 |
+
from module import system_message, user_message
|
4 |
+
from haystack.dataclasses import ChatMessage
|
5 |
+
import time
|
6 |
+
|
7 |
+
|
8 |
+
def process_files_into_docs(pdf_files,progress=gr.Progress()):
|
9 |
+
preprocessing_pipeline.run({'file_type_router': {'sources': pdf_files}})
|
10 |
+
return "Database created🤗🤗"
|
11 |
+
|
12 |
+
|
13 |
+
def rag(history,question):
|
14 |
+
|
15 |
+
if history is None:
|
16 |
+
history=[]
|
17 |
+
messages = [system_message, user_message]
|
18 |
+
res = conversational_rag.run(
|
19 |
+
data = {'query_rephrase_prompt_builder' : {'query': question},
|
20 |
+
'prompt_builder': {'template': messages, 'query': question},
|
21 |
+
'memory_joiner': {'values': [ChatMessage.from_user(question)]}},
|
22 |
+
include_outputs_from=['llm','query_rephrase_llm'])
|
23 |
+
|
24 |
+
bot_message = res['llm']['replies'][0].content
|
25 |
+
|
26 |
+
streamed_message = ""
|
27 |
+
for token in bot_message.split():
|
28 |
+
streamed_message += f"{token} "
|
29 |
+
yield history + [(question, streamed_message.strip())], " "
|
30 |
+
time.sleep(0.05)
|
31 |
+
|
32 |
+
history.append((question,bot_message))
|
33 |
+
|
34 |
+
yield history, " "
|
35 |
+
|
36 |
+
|
37 |
+
with gr.Blocks(theme=gr.themes.Soft(font=gr.themes.GoogleFont('Open Sans')))as demo:
|
38 |
+
|
39 |
+
gr.HTML("<center><h1>TalkToFiles - Query your documents! 📂📄</h1><center>")
|
40 |
+
gr.Markdown("""##### This AI chatbot🤖 can help you chat with your documents. Can upload <b>Text(.txt), PDF(.pdf) and Markdown(.md)</b> files.\
|
41 |
+
<b>Please do not upload confidential documents.</b>""")
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column(scale=86):
|
44 |
+
gr.Markdown("""#### ***Step 1 - Upload Documents and Initialize RAG pipeline***</br>
|
45 |
+
Can upload Multiple documents""")
|
46 |
+
with gr.Row():
|
47 |
+
file_input = gr.File(label='Upload Files', file_count='multiple',file_types=['.pdf', '.txt', '.md'],interactive=True)
|
48 |
+
with gr.Row():
|
49 |
+
process_files = gr.Button('Create Document store')
|
50 |
+
with gr.Row():
|
51 |
+
result = gr.Textbox(label="Document store", value='Document store not initialized')
|
52 |
+
#Pre-processing Events
|
53 |
+
process_files.click(fn=process_files_into_docs, inputs=file_input, outputs=result ,show_progress=True)
|
54 |
+
|
55 |
+
|
56 |
+
with gr.Column(scale=200):
|
57 |
+
gr.Markdown("""#### ***Step 2 - Chat with your docs*** """)
|
58 |
+
chatbot = gr.Chatbot(label='ChatBot')
|
59 |
+
user_input = gr.Textbox(label='Enter your query', placeholder='Type here...')
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
submit_button = gr.Button("Submit")
|
63 |
+
clear_btn = gr.ClearButton([user_input, chatbot], value='Clear')
|
64 |
+
submit_button.click(rag, inputs=[chatbot, user_input], outputs=[chatbot, user_input])
|
65 |
+
|
66 |
+
|
67 |
+
demo.launch()
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|