Create pipeline.py
Browse files- pipeline.py +166 -0
pipeline.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from itertools import chain
|
| 3 |
+
from typing import Any, List
|
| 4 |
+
|
| 5 |
+
from haystack.components.converters import PyPDFToDocument, MarkdownToDocument, TextFileToDocument, OutputAdapter
|
| 6 |
+
from haystack.components.routers import FileTypeRouter
|
| 7 |
+
from haystack.components.joiners import DocumentJoiner
|
| 8 |
+
from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter
|
| 9 |
+
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
| 10 |
+
from haystack.components.writers import DocumentWriter
|
| 11 |
+
from haystack.components.builders import ChatPromptBuilder, PromptBuilder
|
| 12 |
+
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
|
| 13 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 14 |
+
from haystack.core.component.types import Variadic
|
| 15 |
+
|
| 16 |
+
from haystack_experimental.chat_message_stores.in_memory import InMemoryChatMessageStore
|
| 17 |
+
from haystack_experimental.components.retrievers import ChatMessageRetriever
|
| 18 |
+
from haystack_experimental.components.writers import ChatMessageWriter
|
| 19 |
+
from haystack_integrations.components.generators.cohere import CohereChatGenerator, CohereGenerator
|
| 20 |
+
from haystack_experimental.components.retrievers import ChatMessageRetriever
|
| 21 |
+
from haystack_experimental.components.writers import ChatMessageWriter
|
| 22 |
+
|
| 23 |
+
from haystack.dataclasses import ChatMessage
|
| 24 |
+
from haystack import Pipeline
|
| 25 |
+
from haystack import component
|
| 26 |
+
|
| 27 |
+
import os
|
| 28 |
+
from dotenv import load_dotenv
|
| 29 |
+
|
| 30 |
+
# Load .env file
|
| 31 |
+
load_dotenv()
|
| 32 |
+
|
| 33 |
+
# Access the API key
|
| 34 |
+
os.environ["COHERE_API_KEY"] = os.getenv('COHERE_API_KEY')
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
document_store = InMemoryDocumentStore()
|
| 38 |
+
file_type_router = FileTypeRouter(mime_types=['text/plain','application/pdf','text/markdown'])
|
| 39 |
+
pdf_converter = PyPDFToDocument()
|
| 40 |
+
text_file_converter = TextFileToDocument()
|
| 41 |
+
markdown_converter = MarkdownToDocument()
|
| 42 |
+
document_joiner = DocumentJoiner()
|
| 43 |
+
document_cleaner = DocumentCleaner()
|
| 44 |
+
document_splitter = DocumentSplitter(split_by='word', split_overlap=50)
|
| 45 |
+
document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L12-v2")
|
| 46 |
+
document_writer = DocumentWriter(document_store)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
preprocessing_pipeline = Pipeline()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Adding Componenets
|
| 53 |
+
preprocessing_pipeline.add_component('file_type_router', file_type_router)
|
| 54 |
+
preprocessing_pipeline.add_component('text_file_converter', text_file_converter)
|
| 55 |
+
preprocessing_pipeline.add_component('markdown_converter', markdown_converter)
|
| 56 |
+
preprocessing_pipeline.add_component('pdf_converter', pdf_converter)
|
| 57 |
+
preprocessing_pipeline.add_component('document_joiner', document_joiner)
|
| 58 |
+
preprocessing_pipeline.add_component('document_cleaner', document_cleaner)
|
| 59 |
+
preprocessing_pipeline.add_component('document_splitter', document_splitter)
|
| 60 |
+
preprocessing_pipeline.add_component('document_embedder', document_embedder)
|
| 61 |
+
preprocessing_pipeline.add_component('document_writer', document_writer)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Connections
|
| 65 |
+
|
| 66 |
+
preprocessing_pipeline.connect('file_type_router.text/plain', 'text_file_converter.sources')
|
| 67 |
+
preprocessing_pipeline.connect('file_type_router.application/pdf', 'pdf_converter.sources')
|
| 68 |
+
preprocessing_pipeline.connect('file_type_router.text/markdown', 'markdown_converter.sources')
|
| 69 |
+
preprocessing_pipeline.connect('text_file_converter', 'document_joiner')
|
| 70 |
+
preprocessing_pipeline.connect('markdown_converter', 'document_joiner')
|
| 71 |
+
preprocessing_pipeline.connect('pdf_converter', 'document_joiner')
|
| 72 |
+
preprocessing_pipeline.connect('document_joiner', 'document_cleaner')
|
| 73 |
+
preprocessing_pipeline.connect('document_cleaner', 'document_splitter')
|
| 74 |
+
preprocessing_pipeline.connect('document_splitter', 'document_embedder')
|
| 75 |
+
preprocessing_pipeline.connect('document_embedder', 'document_writer')
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@component
|
| 79 |
+
class ListJoiner:
|
| 80 |
+
def __init__(self, _type: Any):
|
| 81 |
+
component.set_output_types(self, values=_type)
|
| 82 |
+
|
| 83 |
+
def run(self, values:Variadic[Any]):
|
| 84 |
+
result = list(chain(*values))
|
| 85 |
+
return {'values':result}
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
memory_store = InMemoryChatMessageStore()
|
| 89 |
+
|
| 90 |
+
query_rephrase_template="""
|
| 91 |
+
Rewrite the question for search while keeping its meaning and key terms intact.
|
| 92 |
+
If the conversation history is empty, DO NOT change the query.
|
| 93 |
+
Use conversation history only if necessary, and avoid extending the query with your own knowledge.
|
| 94 |
+
If no changes are needed, output the current question as is.
|
| 95 |
+
|
| 96 |
+
Conversation history:
|
| 97 |
+
{% for memory in memories %}
|
| 98 |
+
{{ memory.content }}
|
| 99 |
+
{% endfor %}
|
| 100 |
+
|
| 101 |
+
User Query: {{query}}
|
| 102 |
+
Rewritten Query:
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
conversational_rag = Pipeline()
|
| 107 |
+
|
| 108 |
+
#Query rephrasing components
|
| 109 |
+
conversational_rag.add_component("query_rephrase_prompt_builder",PromptBuilder(query_rephrase_template))
|
| 110 |
+
conversational_rag.add_component('query_rephrase_llm',CohereGenerator())
|
| 111 |
+
conversational_rag.add_component('list_to_str_adapter', OutputAdapter(template="{{ replies[0] }}", output_type=str))
|
| 112 |
+
|
| 113 |
+
#RAG components
|
| 114 |
+
conversational_rag.add_component('retriever', InMemoryBM25Retriever(document_store=document_store, top_k=3))
|
| 115 |
+
conversational_rag.add_component('prompt_builder', ChatPromptBuilder(variables=["query", "documents", "memories"],required_variables=['query', 'documents', 'memories']))
|
| 116 |
+
conversational_rag.add_component('llm', CohereChatGenerator())
|
| 117 |
+
|
| 118 |
+
#Memory components
|
| 119 |
+
conversational_rag.add_component('memory_retriever',ChatMessageRetriever(memory_store))
|
| 120 |
+
conversational_rag.add_component('memory_writer', ChatMessageWriter(memory_store))
|
| 121 |
+
conversational_rag.add_component('memory_joiner', ListJoiner(List[ChatMessage]))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
#Query Rephrasing Connections
|
| 125 |
+
conversational_rag.connect('memory_retriever', 'query_rephrase_prompt_builder.memories')
|
| 126 |
+
conversational_rag.connect('query_rephrase_prompt_builder.prompt', 'query_rephrase_llm' )
|
| 127 |
+
conversational_rag.connect('query_rephrase_llm.replies', 'list_to_str_adapter')
|
| 128 |
+
conversational_rag.connect('list_to_str_adapter', 'retriever.query')
|
| 129 |
+
|
| 130 |
+
#RAG connections
|
| 131 |
+
conversational_rag.connect('retriever.documents', 'prompt_builder.documents')
|
| 132 |
+
conversational_rag.connect('prompt_builder.prompt', 'llm.messages')
|
| 133 |
+
conversational_rag.connect('llm.replies', 'memory_joiner')
|
| 134 |
+
|
| 135 |
+
#Memory Connections
|
| 136 |
+
conversational_rag.connect('memory_joiner','memory_writer')
|
| 137 |
+
conversational_rag.connect('memory_retriever','prompt_builder.memories')
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
system_message = ChatMessage.from_system("""You are an intelligent and cheerful AI assistant specialized in assisting humans with queries based on provided supporting documents and conversation history.
|
| 141 |
+
Always prioritize accurate and concise answers derived from the documents, and offer contextually relevant follow-up questions to maintain an engaging and helpful conversation.
|
| 142 |
+
If the answer is not present in the documents, politely inform the user while suggesting alternative ways to help""")
|
| 143 |
+
|
| 144 |
+
user_message_template ="""Based on the conversation history and the provided supporting documents, provide a brief and accurate answer to the question.
|
| 145 |
+
Make the conversation feel more natural and engaging
|
| 146 |
+
|
| 147 |
+
- Format your response for clarity and readability, using bullet points, paragraphs, or lists where necessary.
|
| 148 |
+
- Note: Supporting documents are not part of the conversation history.
|
| 149 |
+
- If the question cannot be answered using the supporting documents, respond with: "The answer is not available in the provided documents."
|
| 150 |
+
|
| 151 |
+
Conversation History:
|
| 152 |
+
{% for memory in memories %}
|
| 153 |
+
{{ memory.content }}
|
| 154 |
+
{% endfor %}
|
| 155 |
+
|
| 156 |
+
Supporting Documents:
|
| 157 |
+
{% for doc in documents %}
|
| 158 |
+
{{ doc.content }}
|
| 159 |
+
{% endfor %}
|
| 160 |
+
|
| 161 |
+
Question: {{ query }}
|
| 162 |
+
Answer:
|
| 163 |
+
|
| 164 |
+
"""
|
| 165 |
+
user_message = ChatMessage.from_user(user_message_template)
|
| 166 |
+
|