|
|
|
from itertools import chain |
|
from typing import Any, List |
|
|
|
from haystack.components.converters import PyPDFToDocument, MarkdownToDocument, TextFileToDocument, OutputAdapter |
|
from haystack.components.routers import FileTypeRouter |
|
from haystack.components.joiners import DocumentJoiner |
|
from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter |
|
from haystack.components.embedders import SentenceTransformersDocumentEmbedder |
|
from haystack.components.writers import DocumentWriter |
|
from haystack.components.builders import ChatPromptBuilder, PromptBuilder |
|
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever |
|
from haystack.document_stores.in_memory import InMemoryDocumentStore |
|
from haystack.core.component.types import Variadic |
|
|
|
from haystack_experimental.chat_message_stores.in_memory import InMemoryChatMessageStore |
|
from haystack_experimental.components.retrievers import ChatMessageRetriever |
|
from haystack_experimental.components.writers import ChatMessageWriter |
|
from haystack_integrations.components.generators.cohere import CohereChatGenerator, CohereGenerator |
|
from haystack_experimental.components.retrievers import ChatMessageRetriever |
|
from haystack_experimental.components.writers import ChatMessageWriter |
|
|
|
from haystack.dataclasses import ChatMessage |
|
from haystack import Pipeline |
|
from haystack import component |
|
|
|
import os |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
os.environ["COHERE_API_KEY"] = os.getenv('COHERE_API_KEY') |
|
|
|
|
|
document_store = InMemoryDocumentStore() |
|
file_type_router = FileTypeRouter(mime_types=['text/plain','application/pdf','text/markdown']) |
|
pdf_converter = PyPDFToDocument() |
|
text_file_converter = TextFileToDocument() |
|
markdown_converter = MarkdownToDocument() |
|
document_joiner = DocumentJoiner() |
|
document_cleaner = DocumentCleaner() |
|
document_splitter = DocumentSplitter(split_by='word', split_overlap=50) |
|
document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L12-v2") |
|
document_writer = DocumentWriter(document_store) |
|
|
|
|
|
preprocessing_pipeline = Pipeline() |
|
|
|
|
|
|
|
preprocessing_pipeline.add_component('file_type_router', file_type_router) |
|
preprocessing_pipeline.add_component('text_file_converter', text_file_converter) |
|
preprocessing_pipeline.add_component('markdown_converter', markdown_converter) |
|
preprocessing_pipeline.add_component('pdf_converter', pdf_converter) |
|
preprocessing_pipeline.add_component('document_joiner', document_joiner) |
|
preprocessing_pipeline.add_component('document_cleaner', document_cleaner) |
|
preprocessing_pipeline.add_component('document_splitter', document_splitter) |
|
preprocessing_pipeline.add_component('document_embedder', document_embedder) |
|
preprocessing_pipeline.add_component('document_writer', document_writer) |
|
|
|
|
|
|
|
|
|
preprocessing_pipeline.connect('file_type_router.text/plain', 'text_file_converter.sources') |
|
preprocessing_pipeline.connect('file_type_router.application/pdf', 'pdf_converter.sources') |
|
preprocessing_pipeline.connect('file_type_router.text/markdown', 'markdown_converter.sources') |
|
preprocessing_pipeline.connect('text_file_converter', 'document_joiner') |
|
preprocessing_pipeline.connect('markdown_converter', 'document_joiner') |
|
preprocessing_pipeline.connect('pdf_converter', 'document_joiner') |
|
preprocessing_pipeline.connect('document_joiner', 'document_cleaner') |
|
preprocessing_pipeline.connect('document_cleaner', 'document_splitter') |
|
preprocessing_pipeline.connect('document_splitter', 'document_embedder') |
|
preprocessing_pipeline.connect('document_embedder', 'document_writer') |
|
|
|
|
|
@component |
|
class ListJoiner: |
|
def __init__(self, _type: Any): |
|
component.set_output_types(self, values=_type) |
|
|
|
def run(self, values:Variadic[Any]): |
|
result = list(chain(*values)) |
|
return {'values':result} |
|
|
|
|
|
memory_store = InMemoryChatMessageStore() |
|
|
|
query_rephrase_template=""" |
|
Rewrite the question for search while keeping its meaning and key terms intact. |
|
If the conversation history is empty, DO NOT change the query. |
|
Use conversation history only if necessary, and avoid extending the query with your own knowledge. |
|
If no changes are needed, output the current question as is. |
|
|
|
Conversation history: |
|
{% for memory in memories %} |
|
{{ memory.content }} |
|
{% endfor %} |
|
|
|
User Query: {{query}} |
|
Rewritten Query: |
|
""" |
|
|
|
|
|
conversational_rag = Pipeline() |
|
|
|
|
|
conversational_rag.add_component("query_rephrase_prompt_builder",PromptBuilder(query_rephrase_template)) |
|
conversational_rag.add_component('query_rephrase_llm',CohereGenerator()) |
|
conversational_rag.add_component('list_to_str_adapter', OutputAdapter(template="{{ replies[0] }}", output_type=str)) |
|
|
|
|
|
conversational_rag.add_component('retriever', InMemoryBM25Retriever(document_store=document_store, top_k=3)) |
|
conversational_rag.add_component('prompt_builder', ChatPromptBuilder(variables=["query", "documents", "memories"],required_variables=['query', 'documents', 'memories'])) |
|
conversational_rag.add_component('llm', CohereChatGenerator()) |
|
|
|
|
|
conversational_rag.add_component('memory_retriever',ChatMessageRetriever(memory_store)) |
|
conversational_rag.add_component('memory_writer', ChatMessageWriter(memory_store)) |
|
conversational_rag.add_component('memory_joiner', ListJoiner(List[ChatMessage])) |
|
|
|
|
|
|
|
conversational_rag.connect('memory_retriever', 'query_rephrase_prompt_builder.memories') |
|
conversational_rag.connect('query_rephrase_prompt_builder.prompt', 'query_rephrase_llm' ) |
|
conversational_rag.connect('query_rephrase_llm.replies', 'list_to_str_adapter') |
|
conversational_rag.connect('list_to_str_adapter', 'retriever.query') |
|
|
|
|
|
conversational_rag.connect('retriever.documents', 'prompt_builder.documents') |
|
conversational_rag.connect('prompt_builder.prompt', 'llm.messages') |
|
conversational_rag.connect('llm.replies', 'memory_joiner') |
|
|
|
|
|
conversational_rag.connect('memory_joiner','memory_writer') |
|
conversational_rag.connect('memory_retriever','prompt_builder.memories') |
|
|
|
|
|
system_message = ChatMessage.from_system("""You are an intelligent and cheerful AI assistant specialized in assisting humans with queries based on provided supporting documents and conversation history. |
|
Always prioritize accurate and concise answers derived from the documents, and offer contextually relevant follow-up questions to maintain an engaging and helpful conversation. |
|
If the answer is not present in the documents, politely inform the user while suggesting alternative ways to help""") |
|
|
|
user_message_template ="""Based on the conversation history and the provided supporting documents, provide a brief and accurate answer to the question. |
|
Make the conversation feel more natural and engaging |
|
|
|
- Format your response for clarity and readability, using bullet points, paragraphs, or lists where necessary. |
|
- Note: Supporting documents are not part of the conversation history. |
|
- If the question cannot be answered using the supporting documents, respond with: "The answer is not available in the provided documents." |
|
|
|
Conversation History: |
|
{% for memory in memories %} |
|
{{ memory.content }} |
|
{% endfor %} |
|
|
|
Supporting Documents: |
|
{% for doc in documents %} |
|
{{ doc.content }} |
|
{% endfor %} |
|
|
|
Question: {{ query }} |
|
Answer: |
|
|
|
""" |
|
user_message = ChatMessage.from_user(user_message_template) |
|
|
|
|