Spaces:
Sleeping
Sleeping
from itertools import chain | |
from typing import Any, List | |
from haystack.components.converters import PyPDFToDocument, MarkdownToDocument, TextFileToDocument, OutputAdapter | |
from haystack.components.routers import FileTypeRouter | |
from haystack.components.joiners import DocumentJoiner | |
from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter | |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder | |
from haystack.components.writers import DocumentWriter | |
from haystack.components.builders import ChatPromptBuilder, PromptBuilder | |
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever | |
from haystack.document_stores.in_memory import InMemoryDocumentStore | |
from haystack.core.component.types import Variadic | |
from haystack_experimental.chat_message_stores.in_memory import InMemoryChatMessageStore | |
from haystack_experimental.components.retrievers import ChatMessageRetriever | |
from haystack_experimental.components.writers import ChatMessageWriter | |
from haystack_integrations.components.generators.cohere import CohereChatGenerator, CohereGenerator | |
from haystack_experimental.components.retrievers import ChatMessageRetriever | |
from haystack_experimental.components.writers import ChatMessageWriter | |
from haystack.dataclasses import ChatMessage | |
from haystack import Pipeline | |
from haystack import component | |
import os | |
from dotenv import load_dotenv | |
# Load .env file | |
load_dotenv() | |
# Access the API key | |
os.environ["COHERE_API_KEY"] = os.getenv('COHERE_API_KEY') | |
document_store = InMemoryDocumentStore() | |
file_type_router = FileTypeRouter(mime_types=['text/plain','application/pdf','text/markdown']) | |
pdf_converter = PyPDFToDocument() | |
text_file_converter = TextFileToDocument() | |
markdown_converter = MarkdownToDocument() | |
document_joiner = DocumentJoiner() | |
document_cleaner = DocumentCleaner() | |
document_splitter = DocumentSplitter(split_by='word', split_overlap=50) | |
document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L12-v2") | |
document_writer = DocumentWriter(document_store) | |
preprocessing_pipeline = Pipeline() | |
# Adding Componenets | |
preprocessing_pipeline.add_component('file_type_router', file_type_router) | |
preprocessing_pipeline.add_component('text_file_converter', text_file_converter) | |
preprocessing_pipeline.add_component('markdown_converter', markdown_converter) | |
preprocessing_pipeline.add_component('pdf_converter', pdf_converter) | |
preprocessing_pipeline.add_component('document_joiner', document_joiner) | |
preprocessing_pipeline.add_component('document_cleaner', document_cleaner) | |
preprocessing_pipeline.add_component('document_splitter', document_splitter) | |
preprocessing_pipeline.add_component('document_embedder', document_embedder) | |
preprocessing_pipeline.add_component('document_writer', document_writer) | |
# Connections | |
preprocessing_pipeline.connect('file_type_router.text/plain', 'text_file_converter.sources') | |
preprocessing_pipeline.connect('file_type_router.application/pdf', 'pdf_converter.sources') | |
preprocessing_pipeline.connect('file_type_router.text/markdown', 'markdown_converter.sources') | |
preprocessing_pipeline.connect('text_file_converter', 'document_joiner') | |
preprocessing_pipeline.connect('markdown_converter', 'document_joiner') | |
preprocessing_pipeline.connect('pdf_converter', 'document_joiner') | |
preprocessing_pipeline.connect('document_joiner', 'document_cleaner') | |
preprocessing_pipeline.connect('document_cleaner', 'document_splitter') | |
preprocessing_pipeline.connect('document_splitter', 'document_embedder') | |
preprocessing_pipeline.connect('document_embedder', 'document_writer') | |
class ListJoiner: | |
def __init__(self, _type: Any): | |
component.set_output_types(self, values=_type) | |
def run(self, values:Variadic[Any]): | |
result = list(chain(*values)) | |
return {'values':result} | |
memory_store = InMemoryChatMessageStore() | |
query_rephrase_template=""" | |
Rewrite the question for search while keeping its meaning and key terms intact. | |
If the conversation history is empty, DO NOT change the query. | |
Use conversation history only if necessary, and avoid extending the query with your own knowledge. | |
If no changes are needed, output the current question as is. | |
Conversation history: | |
{% for memory in memories %} | |
{{ memory.content }} | |
{% endfor %} | |
User Query: {{query}} | |
Rewritten Query: | |
""" | |
conversational_rag = Pipeline() | |
#Query rephrasing components | |
conversational_rag.add_component("query_rephrase_prompt_builder",PromptBuilder(query_rephrase_template)) | |
conversational_rag.add_component('query_rephrase_llm',CohereGenerator()) | |
conversational_rag.add_component('list_to_str_adapter', OutputAdapter(template="{{ replies[0] }}", output_type=str)) | |
#RAG components | |
conversational_rag.add_component('retriever', InMemoryBM25Retriever(document_store=document_store, top_k=3)) | |
conversational_rag.add_component('prompt_builder', ChatPromptBuilder(variables=["query", "documents", "memories"],required_variables=['query', 'documents', 'memories'])) | |
conversational_rag.add_component('llm', CohereChatGenerator()) | |
#Memory components | |
conversational_rag.add_component('memory_retriever',ChatMessageRetriever(memory_store)) | |
conversational_rag.add_component('memory_writer', ChatMessageWriter(memory_store)) | |
conversational_rag.add_component('memory_joiner', ListJoiner(List[ChatMessage])) | |
#Query Rephrasing Connections | |
conversational_rag.connect('memory_retriever', 'query_rephrase_prompt_builder.memories') | |
conversational_rag.connect('query_rephrase_prompt_builder.prompt', 'query_rephrase_llm' ) | |
conversational_rag.connect('query_rephrase_llm.replies', 'list_to_str_adapter') | |
conversational_rag.connect('list_to_str_adapter', 'retriever.query') | |
#RAG connections | |
conversational_rag.connect('retriever.documents', 'prompt_builder.documents') | |
conversational_rag.connect('prompt_builder.prompt', 'llm.messages') | |
conversational_rag.connect('llm.replies', 'memory_joiner') | |
#Memory Connections | |
conversational_rag.connect('memory_joiner','memory_writer') | |
conversational_rag.connect('memory_retriever','prompt_builder.memories') | |
system_message = ChatMessage.from_system("""You are an intelligent and cheerful AI assistant specialized in assisting humans with queries based on provided supporting documents and conversation history. | |
Always prioritize accurate and concise answers derived from the documents, and offer contextually relevant follow-up questions to maintain an engaging and helpful conversation. | |
If the answer is not present in the documents, politely inform the user while suggesting alternative ways to help""") | |
user_message_template ="""Based on the conversation history and the provided supporting documents, provide a brief and accurate answer to the question. | |
Make the conversation feel more natural and engaging | |
- Format your response for clarity and readability, using bullet points, paragraphs, or lists where necessary. | |
- Note: Supporting documents are not part of the conversation history. | |
- If the question cannot be answered using the supporting documents, respond with: "The answer is not available in the provided documents." | |
Conversation History: | |
{% for memory in memories %} | |
{{ memory.content }} | |
{% endfor %} | |
Supporting Documents: | |
{% for doc in documents %} | |
{{ doc.content }} | |
{% endfor %} | |
Question: {{ query }} | |
Answer: | |
""" | |
user_message = ChatMessage.from_user(user_message_template) | |