Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import MarianMTModel, MarianTokenizer | |
# Load the MarianMT model and tokenizer | |
model_name = "Dddixyy/latin-italian-translator" | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
# Translation function | |
def translate_latin_to_italian(latin_text): | |
# Truncate input to a maximum length of 512 tokens to avoid overload | |
inputs = tokenizer(latin_text, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
# Use torch.no_grad() to speed up inference by not calculating gradients | |
with torch.no_grad(): | |
generated_ids = model.generate(inputs["input_ids"]) | |
# Decode the generated ids into a readable translation | |
translation = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
return translation[0] | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=translate_latin_to_italian, | |
inputs="text", | |
outputs="text", | |
title="Latin to Italian Translator", | |
description="Translate Latin sentences to Italian using a fine-tuned MarianMT model.", | |
examples=[["Amor vincit omnia."], ["Veni, vidi, vici."], ["Carpe diem."], ["Alea iacta est."]] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch(server_name="0.0.0.0", server_port=7860) | |