Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import MarianMTModel, MarianTokenizer
|
4 |
-
from optimum.intel import IncQuantizer
|
5 |
|
6 |
-
# Load
|
7 |
model_name = "Dddixyy/latin-italian-translator"
|
8 |
-
|
9 |
-
# Load the quantized model if available or use a regular model (quantization shown as an example)
|
10 |
-
try:
|
11 |
-
# Attempt to load a quantized version if it's available
|
12 |
-
quantizer = IncQuantizer.from_pretrained(model_name)
|
13 |
-
model = quantizer.quantize()
|
14 |
-
print("Quantized model loaded.")
|
15 |
-
except Exception as e:
|
16 |
-
print(f"Error loading quantized model: {e}")
|
17 |
-
model = MarianMTModel.from_pretrained(model_name)
|
18 |
-
|
19 |
-
# Load tokenizer
|
20 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
|
|
21 |
|
22 |
# Translation function
|
23 |
def translate_latin_to_italian(latin_text):
|
24 |
-
# Truncate input to 512 tokens to avoid overload
|
25 |
inputs = tokenizer(latin_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
26 |
|
|
|
27 |
with torch.no_grad():
|
28 |
generated_ids = model.generate(inputs["input_ids"])
|
29 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import MarianMTModel, MarianTokenizer
|
|
|
4 |
|
5 |
+
# Load the MarianMT model and tokenizer
|
6 |
model_name = "Dddixyy/latin-italian-translator"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
8 |
+
model = MarianMTModel.from_pretrained(model_name)
|
9 |
|
10 |
# Translation function
|
11 |
def translate_latin_to_italian(latin_text):
|
12 |
+
# Truncate input to a maximum length of 512 tokens to avoid overload
|
13 |
inputs = tokenizer(latin_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
14 |
|
15 |
+
# Use torch.no_grad() to speed up inference by not calculating gradients
|
16 |
with torch.no_grad():
|
17 |
generated_ids = model.generate(inputs["input_ids"])
|
18 |
|