VisionScout / app.py
DawnC's picture
Add new feature "Video Process" and fix format issue
c0fe80d verified
raw
history blame
34.6 kB
import os
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from typing import Dict, List, Any, Optional, Tuple
import cv2
from PIL import Image
import tempfile
import uuid
import spaces
from detection_model import DetectionModel
from color_mapper import ColorMapper
from evaluation_metrics import EvaluationMetrics
from style import Style
from image_processor import ImageProcessor
from video_processor import VideoProcessor
# Initialize Processors
image_processor = ImageProcessor()
video_processor = VideoProcessor(image_processor)
# Helper Function
def get_all_classes():
"""Gets all available COCO classes."""
# Try to get from a loaded model first
if image_processor and image_processor.model_instances:
for model_instance in image_processor.model_instances.values():
if model_instance and model_instance.is_model_loaded:
try:
# Ensure class_names is a dict {id: name}
if isinstance(model_instance.class_names, dict):
return sorted([(int(idx), name) for idx, name in model_instance.class_names.items()])
except Exception as e:
print(f"Error getting class names from model: {e}")
# Fallback to standard COCO (ensure keys are ints)
default_classes = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair',
57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet',
62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}
return sorted(default_classes.items())
@spaces.GPU
def handle_image_upload(image, model_name, confidence_threshold, filter_classes=None):
"""Processes a single uploaded image."""
print(f"Processing image with model: {model_name}, confidence: {confidence_threshold}")
try:
class_ids_to_filter = None
if filter_classes:
class_ids_to_filter = []
available_classes_dict = dict(get_all_classes())
name_to_id = {name: id for id, name in available_classes_dict.items()}
for class_str in filter_classes:
class_name_or_id = class_str.split(":")[0].strip()
class_id = -1
try:
class_id = int(class_name_or_id)
if class_id not in available_classes_dict:
class_id = -1
except ValueError:
if class_name_or_id in name_to_id:
class_id = name_to_id[class_name_or_id]
elif class_str in name_to_id: # Check full string "id: name"
class_id = name_to_id[class_str]
if class_id != -1:
class_ids_to_filter.append(class_id)
else:
print(f"Warning: Could not parse class filter: {class_str}")
print(f"Filtering image results for class IDs: {class_ids_to_filter}")
# Call the existing image processing logic
result_image, result_text, stats = image_processor.process_image(
image,
model_name,
confidence_threshold,
class_ids_to_filter
)
# Format stats for JSON display
formatted_stats = image_processor.format_json_for_display(stats)
# Prepare visualization data for the plot
plot_figure = None
if stats and "class_statistics" in stats and stats["class_statistics"]:
available_classes_dict = dict(get_all_classes())
viz_data = image_processor.prepare_visualization_data(stats, available_classes_dict)
if "error" not in viz_data:
plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
else:
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, viz_data["error"], ha='center', va='center', fontsize=12)
ax.axis('off')
plot_figure = fig
else:
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, "No detection data for plot", ha='center', va='center', fontsize=12)
ax.axis('off')
plot_figure = fig
# Extract scene analysis info
scene_analysis = stats.get("scene_analysis", {})
scene_desc = scene_analysis.get("description", "Scene analysis requires detected objects.")
# Ensure scene_desc is a string before adding HTML
if not isinstance(scene_desc, str):
scene_desc = str(scene_desc)
scene_desc_html = f"<div style='padding:10px; font-family:Arial, sans-serif; line-height:1.7;'>{scene_desc}</div>"
# Prepare activities list
activities_list = scene_analysis.get("possible_activities", [])
if not activities_list:
activities_list_data = [["No specific activities inferred"]] # Data for Dataframe
else:
activities_list_data = [[activity] for activity in activities_list]
# Prepare safety concerns list
safety_concerns_list = scene_analysis.get("safety_concerns", [])
if not safety_concerns_list:
safety_data = [["No safety concerns detected"]] # Data for Dataframe
else:
safety_data = [[concern] for concern in safety_concerns_list]
zones = scene_analysis.get("functional_zones", {})
lighting = scene_analysis.get("lighting_conditions", {"time_of_day": "unknown", "confidence": 0})
return (result_image, result_text, formatted_stats, plot_figure,
scene_desc_html, activities_list_data, safety_data, zones, lighting)
except Exception as e:
print(f"Error in handle_image_upload: {e}")
import traceback
error_msg = f"Error processing image: {str(e)}\n{traceback.format_exc()}"
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Processing Error", color="red", ha="center", va="center")
ax.axis('off')
# Ensure return structure matches outputs even on error
return (None, error_msg, {}, fig, f"<div>Error: {str(e)}</div>",
[["Error"]], [["Error"]], {}, {"time_of_day": "error", "confidence": 0})
def download_video_from_url(video_url, max_duration_minutes=10):
"""
Downloads a video from a YouTube URL and returns the local path to the downloaded file.
Args:
video_url (str): URL of the YouTube video to download
max_duration_minutes (int): Maximum allowed video duration in minutes
Returns:
tuple: (Path to the downloaded video file or None, Error message or None)
"""
try:
# Create a temporary directory to store the video
temp_dir = tempfile.gettempdir()
output_filename = f"downloaded_{uuid.uuid4().hex}.mp4"
output_path = os.path.join(temp_dir, output_filename)
# Check if it's a YouTube URL
if "youtube.com" in video_url or "youtu.be" in video_url:
# Import yt-dlp here to avoid dependency if not needed
import yt_dlp
# Setup yt-dlp options
ydl_opts = {
'format': 'best[ext=mp4]/best', # Best quality MP4 or best available format
'outtmpl': output_path,
'noplaylist': True,
'quiet': False, # Set to True to reduce output
'no_warnings': False,
}
# First extract info to check duration
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
print(f"Extracting info from YouTube URL: {video_url}")
info_dict = ydl.extract_info(video_url, download=False)
# Check if video exists
if not info_dict:
return None, "Could not retrieve video information. Please check the URL."
video_title = info_dict.get('title', 'Unknown Title')
duration = info_dict.get('duration', 0)
print(f"Video title: {video_title}")
print(f"Video duration: {duration} seconds")
# Check video duration
if duration > max_duration_minutes * 60:
return None, f"Video is too long ({duration} seconds). Maximum duration is {max_duration_minutes} minutes."
# Download the video
print(f"Downloading YouTube video: {video_title}")
ydl.download([video_url])
# Verify the file exists and has content
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
return None, "Download failed: Empty or missing file."
print(f"Successfully downloaded video to: {output_path}")
return output_path, None
else:
return None, "Only YouTube URLs are supported at this time. Please enter a valid YouTube URL."
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error downloading video: {e}\n{error_details}")
return None, f"Error downloading video: {str(e)}"
@spaces.GPU
def handle_video_upload(video_input, video_url, input_type, model_name, confidence_threshold, process_interval):
"""Handles video upload or URL input and calls the VideoProcessor."""
print(f"Received video request: input_type={input_type}")
video_path = None
# Handle based on input type
if input_type == "upload" and video_input:
print(f"Processing uploaded video file")
video_path = video_input
elif input_type == "url" and video_url:
print(f"Processing video from URL: {video_url}")
# Download video from URL
video_path, error_message = download_video_from_url(video_url)
if error_message:
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_message}</pre></div>"
return None, error_html, {"error": error_message}
else:
print("No valid video input provided.")
return None, "<div class='video-summary-content-wrapper'><pre>Please upload a video file or provide a valid video URL.</pre></div>", {}
print(f"Starting video processing with: model={model_name}, confidence={confidence_threshold}, interval={process_interval}")
try:
# Call the VideoProcessor method
output_video_path, summary_text, stats_dict = video_processor.process_video_file(
video_path=video_path,
model_name=model_name,
confidence_threshold=confidence_threshold,
process_interval=int(process_interval) # Ensure interval is int
)
print(f"Video processing function returned: path={output_video_path}, summary length={len(summary_text)}")
# Wrap processing summary in HTML tags for consistent styling with scene understanding page
summary_html = f"<div class='video-summary-content-wrapper'><pre>{summary_text}</pre></div>"
# Format statistics for better display
formatted_stats = {}
if stats_dict and isinstance(stats_dict, dict):
formatted_stats = stats_dict
return output_video_path, summary_html, formatted_stats
except Exception as e:
print(f"Error in handle_video_upload: {e}")
import traceback
error_msg = f"Error processing video: {str(e)}\n{traceback.format_exc()}"
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
return None, error_html, {"error": str(e)}
# Create Gradio Interface
def create_interface():
"""Creates the Gradio interface with Tabs."""
css = Style.get_css()
available_models = DetectionModel.get_available_models()
model_choices = [model["model_file"] for model in available_models]
class_choices_formatted = [f"{id}: {name}" for id, name in get_all_classes()] # Use formatted choices
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
# Header
with gr.Group(elem_classes="app-header"):
gr.HTML("""
<div style="text-align: center; width: 100%; padding: 2rem 0 3rem 0; background: linear-gradient(135deg, #f0f9ff, #e1f5fe);">
<h1 style="font-size: 3.5rem; margin-bottom: 0.5rem; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: bold; font-family: 'Arial', sans-serif;">VisionScout</h1>
<h2 style="color: #4A5568; font-size: 1.2rem; font-weight: 400; margin-top: 0.5rem; margin-bottom: 1.5rem; font-family: 'Arial', sans-serif;">Object Detection and Scene Understanding</h2>
<div style="display: flex; justify-content: center; gap: 10px; margin: 0.5rem 0;"><div style="height: 3px; width: 80px; background: linear-gradient(90deg, #38b2ac, #4299e1);"></div></div>
<div style="display: flex; justify-content: center; gap: 25px; margin-top: 1.5rem;">
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(66, 153, 225, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🖼️</span> Image Analysis</div>
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(56, 178, 172, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🎬</span> Video Analysis</div>
</div>
<div style="margin-top: 20px; padding: 10px 15px; background-color: rgba(255, 248, 230, 0.9); border-left: 3px solid #f6ad55; border-radius: 6px; max-width: 600px; margin-left: auto; margin-right: auto; text-align: left;">
<p style="margin: 0; font-size: 0.9rem; color: #805ad5; font-weight: 500;">
<span style="margin-right: 5px;">📱</span> iPhone users: HEIC images may not be supported.
<a href="https://cloudconvert.com/heic-to-jpg" target="_blank" style="color: #3182ce; text-decoration: underline;">Convert HEIC to JPG</a> before uploading if needed.
</p>
</div>
</div>
""")
# Main Content with Tabs
with gr.Tabs(elem_classes="tabs"):
# Tab 1: Image Processing
with gr.Tab("Image Processing"):
current_image_model = gr.State("yolov8m.pt") # State for image model selection
with gr.Row(equal_height=False): # Allow columns to have different heights
# Left Column: Image Input & Controls
with gr.Column(scale=4, elem_classes="input-panel"):
with gr.Group():
gr.HTML('<div class="section-heading">Upload Image</div>')
image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box")
with gr.Accordion("Image Analysis Settings", open=False):
image_model_dropdown = gr.Dropdown(
choices=model_choices,
value="yolov8m.pt", # Default for images
label="Select Model",
info="Choose speed vs. accuracy (n=fast, m=balanced, x=accurate)"
)
# Display model info
image_model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
image_confidence = gr.Slider(
minimum=0.1, maximum=0.9, value=0.25, step=0.05,
label="Confidence Threshold",
info="Minimum confidence for displaying a detected object"
)
with gr.Accordion("Filter Classes", open=False):
gr.HTML('<div class="section-heading" style="font-size: 1rem;">Common Categories</div>')
with gr.Row():
people_btn = gr.Button("People", size="sm")
vehicles_btn = gr.Button("Vehicles", size="sm")
animals_btn = gr.Button("Animals", size="sm")
objects_btn = gr.Button("Common Objects", size="sm")
image_class_filter = gr.Dropdown(
choices=class_choices_formatted, # Use formatted choices
multiselect=True,
label="Select Classes to Display",
info="Leave empty to show all detected objects"
)
image_detect_btn = gr.Button("Analyze Image", variant="primary", elem_classes="detect-btn")
with gr.Group(elem_classes="how-to-use"):
gr.HTML('<div class="section-heading">How to Use (Image)</div>')
gr.Markdown("""
1. Upload an image or use the camera
2. (Optional) Adjust settings like confidence threshold or model size (n, m, x)
3. Optionally filter to specific object classes
4. Click **Detect Objects** button
""")
# Image Examples
gr.Examples(
examples=[
"room_01.jpg",
"room_02.jpg",
"street_02.jpg",
"street_04.jpg"
],
inputs=image_input,
label="Example Images"
)
# Right Column: Image Results
with gr.Column(scale=6, elem_classes="output-panel"):
with gr.Tabs(elem_classes="tabs"):
with gr.Tab("Detection Result"):
image_result_image = gr.Image(type="pil", label="Detection Result")
gr.HTML('<div class="section-heading">Detection Details</div>')
image_result_text = gr.Textbox(label=None, lines=10, elem_id="detection-details", container=False)
with gr.Tab("Scene Understanding"):
gr.HTML('<div class="section-heading">Scene Analysis</div>')
gr.HTML("""
<details class="info-details" style="margin: 5px 0 15px 0;">
<summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
🔍 The AI Vision Scout Report: Click for important notes about this analysis
</summary>
<div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
<p style="font-size: 13px; color: #718096; margin: 0;">
<b>About this analysis:</b> This analysis is the model's best guess based on visible objects.
Like human scouts, it sometimes gets lost or sees things that aren't there (but don't we all?).
Consider this an educated opinion rather than absolute truth. For critical applications, always verify with human eyes! 🧐
</p>
</div>
</details>
""")
# Wrap HTML description for potential styling
image_scene_description_html = gr.HTML(label=None, elem_id="scene_analysis_description_text")
with gr.Row():
with gr.Column(scale=1):
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Possible Activities</div>')
image_activities_list = gr.Dataframe(headers=["Activity"], datatype=["str"], row_count=5, col_count=1, wrap=True)
with gr.Column(scale=1):
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Safety Concerns</div>')
image_safety_list = gr.Dataframe(headers=["Concern"], datatype=["str"], row_count=5, col_count=1, wrap=True)
gr.HTML('<div class="section-heading">Functional Zones</div>')
image_zones_json = gr.JSON(label=None, elem_classes="json-box")
gr.HTML('<div class="section-heading">Lighting Conditions</div>')
image_lighting_info = gr.JSON(label=None, elem_classes="json-box")
with gr.Tab("Statistics"):
with gr.Row():
with gr.Column(scale=3, elem_classes="plot-column"):
gr.HTML('<div class="section-heading">Object Distribution</div>')
image_plot_output = gr.Plot(label=None, elem_classes="large-plot-container")
with gr.Column(scale=2, elem_classes="stats-column"):
gr.HTML('<div class="section-heading">Detection Statistics</div>')
image_stats_json = gr.JSON(label=None, elem_classes="enhanced-json-display")
# Tab 2: Video Processing
with gr.Tab("Video Processing"):
with gr.Row(equal_height=False):
# Left Column: Video Input & Controls
with gr.Column(scale=4, elem_classes="input-panel"):
with gr.Group():
gr.HTML('<div class="section-heading">Video Input</div>')
# Add input type selection
video_input_type = gr.Radio(
["upload", "url"],
label="Input Method",
value="upload",
info="Choose how to provide the video"
)
# File upload (will be shown/hidden based on selection)
with gr.Group(elem_id="upload-video-group"):
video_input = gr.Video(
label="Upload a video file (MP4, AVI, MOV)",
sources=["upload"],
visible=True
)
# URL input (will be shown/hidden based on selection)
with gr.Group(elem_id="url-video-group"):
video_url_input = gr.Textbox(
label="Enter video URL (YouTube or direct video link)",
placeholder="https://www.youtube.com/watch?v=...",
visible=False,
elem_classes="custom-video-url-input"
)
gr.HTML("""
<div style="padding: 8px; margin-top: 5px; background-color: #fff8f8; border-radius: 4px; border-left: 3px solid #f87171; font-size: 12px;">
<p style="margin: 0; color: #4b5563;">
Note: Currently only YouTube URLs are supported. Maximum video duration is 10 minutes.
</p>
</div>
""")
with gr.Accordion("Video Analysis Settings", open=True):
video_model_dropdown = gr.Dropdown(
choices=model_choices,
value="yolov8n.pt", # Default 'n' for video
label="Select Model (Video)",
info="Faster models (like 'n') are recommended"
)
video_confidence = gr.Slider(
minimum=0.1, maximum=0.9, value=0.4, step=0.05,
label="Confidence Threshold (Video)"
)
video_process_interval = gr.Slider(
minimum=1, maximum=60, value=10, step=1, # Allow up to 60 frame interval
label="Processing Interval (Frames)",
info="Analyze every Nth frame (higher value = faster)"
)
video_process_btn = gr.Button("Process Video", variant="primary", elem_classes="detect-btn")
with gr.Group(elem_classes="how-to-use"):
gr.HTML('<div class="section-heading">How to Use (Video)</div>')
gr.Markdown("""
1. Choose your input method: Upload a file or enter a URL.
2. Adjust settings if needed (using a faster model and larger interval is recommended for longer videos).
3. Click "Process Video". **Processing can take a significant amount of time.**
4. The annotated video and summary will appear on the right when finished.
""")
# Add video examples
gr.HTML('<div class="section-heading">Example Videos</div>')
gr.HTML("""
<div style="padding: 10px; background-color: #f0f7ff; border-radius: 6px; margin-bottom: 15px;">
<p style="font-size: 14px; color: #4A5568; margin: 0;">
Upload any video containing objects that YOLO can detect. For testing, find sample videos
<a href="https://www.pexels.com/search/videos/street/" target="_blank" style="color: #3182ce; text-decoration: underline;">here</a>.
</p>
</div>
""")
# Right Column: Video Results
with gr.Column(scale=6, elem_classes="output-panel video-result-panel"):
gr.HTML("""
<div class="section-heading">Video Result</div>
<details class="info-details" style="margin: 5px 0 15px 0;">
<summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
🎬 Video Processing Notes
</summary>
<div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
<p style="font-size: 13px; color: #718096; margin: 0;">
The processed video includes bounding boxes around detected objects. For longer videos,
consider using a faster model (like YOLOv8n) and a higher frame interval to reduce processing time.
</p>
</div>
</details>
""")
video_output = gr.Video(label="Processed Video", elem_classes="video-output-container") # Output for the processed video file
gr.HTML('<div class="section-heading">Processing Summary</div>')
# 使用HTML顯示影片的摘要
video_summary_text = gr.HTML(
label=None,
elem_id="video-summary-html-output"
)
gr.HTML('<div class="section-heading">Aggregated Statistics</div>')
video_stats_json = gr.JSON(label=None, elem_classes="video-stats-display") # Display statistics
# Event Listeners
# Image Model Change Handler
image_model_dropdown.change(
fn=lambda model: (model, DetectionModel.get_model_description(model)),
inputs=[image_model_dropdown],
outputs=[current_image_model, image_model_info] # Update state and description
)
# Image Filter Buttons
available_classes_list = get_all_classes() # Get list of (id, name)
people_classes_ids = [0]
vehicles_classes_ids = [1, 2, 3, 4, 5, 6, 7, 8]
animals_classes_ids = list(range(14, 24))
common_objects_ids = [39, 41, 42, 43, 44, 45, 56, 57, 60, 62, 63, 67, 73] # Bottle, cup, fork, knife, spoon, bowl, chair, couch, table, tv, laptop, phone, book
people_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in people_classes_ids], outputs=image_class_filter)
vehicles_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in vehicles_classes_ids], outputs=image_class_filter)
animals_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in animals_classes_ids], outputs=image_class_filter)
objects_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in common_objects_ids], outputs=image_class_filter)
video_input_type.change(
fn=lambda input_type: [
# Show/hide file upload
gr.update(visible=(input_type == "upload")),
# Show/hide URL input
gr.update(visible=(input_type == "url"))
],
inputs=[video_input_type],
outputs=[video_input, video_url_input]
)
# Image Processing Button Click
image_detect_btn.click(
fn=handle_image_upload,
inputs=[image_input, image_model_dropdown, image_confidence, image_class_filter],
outputs=[
image_result_image, image_result_text, image_stats_json, image_plot_output,
image_scene_description_html, image_activities_list, image_safety_list, image_zones_json,
image_lighting_info
]
)
video_process_btn.click(
fn=handle_video_upload,
inputs=[
video_input,
video_url_input,
video_input_type,
video_model_dropdown,
video_confidence,
video_process_interval
],
outputs=[video_output, video_summary_text, video_stats_json]
)
# Footer
gr.HTML("""
<div class="footer" style="padding: 25px 0; text-align: center; background: linear-gradient(to right, #f5f9fc, #e1f5fe); border-top: 1px solid #e2e8f0; margin-top: 30px;">
<div style="margin-bottom: 15px;">
<p style="font-size: 14px; color: #4A5568; margin: 5px 0;">Powered by YOLOv8, CLIP and Ultralytics • Created with Gradio</p>
</div>
<div style="display: flex; align-items: center; justify-content: center; gap: 20px; margin-top: 15px;">
<p style="font-family: 'Arial', sans-serif; font-size: 14px; font-weight: 500; letter-spacing: 2px; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0; text-transform: uppercase; display: inline-block;">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/VisionScout" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-VisionScout-4299e1?logo=github&style=for-the-badge">
</a>
</div>
</div>
""")
return demo
if __name__ == "__main__":
demo_interface = create_interface()
demo_interface.launch()