Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,599 Bytes
611206a c0fe80d 1487b33 611206a 1487b33 c0fe80d 611206a c0fe80d 1487b33 c0fe80d 611206a c0fe80d 611206a c0fe80d 611206a 1487b33 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 1487b33 c0fe80d 1487b33 c0fe80d 611206a c0fe80d 611206a c0fe80d 1487b33 611206a c0fe80d 611206a 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 3172319 c0fe80d 611206a c0fe80d 611206a 1487b33 c0fe80d 1487b33 c0fe80d 3172319 c0fe80d 611206a c0fe80d 611206a c0fe80d 1487b33 c0fe80d 1487b33 c0fe80d 1487b33 c0fe80d 611206a 1487b33 c0fe80d 611206a 1487b33 c0fe80d 611206a 1487b33 c0fe80d 611206a 1487b33 611206a c0fe80d 611206a 1487b33 611206a c0fe80d 611206a c0fe80d 1487b33 c0fe80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import os
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from typing import Dict, List, Any, Optional, Tuple
import cv2
from PIL import Image
import tempfile
import uuid
import spaces
from detection_model import DetectionModel
from color_mapper import ColorMapper
from evaluation_metrics import EvaluationMetrics
from style import Style
from image_processor import ImageProcessor
from video_processor import VideoProcessor
# Initialize Processors
image_processor = ImageProcessor()
video_processor = VideoProcessor(image_processor)
# Helper Function
def get_all_classes():
"""Gets all available COCO classes."""
# Try to get from a loaded model first
if image_processor and image_processor.model_instances:
for model_instance in image_processor.model_instances.values():
if model_instance and model_instance.is_model_loaded:
try:
# Ensure class_names is a dict {id: name}
if isinstance(model_instance.class_names, dict):
return sorted([(int(idx), name) for idx, name in model_instance.class_names.items()])
except Exception as e:
print(f"Error getting class names from model: {e}")
# Fallback to standard COCO (ensure keys are ints)
default_classes = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair',
57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet',
62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}
return sorted(default_classes.items())
@spaces.GPU
def handle_image_upload(image, model_name, confidence_threshold, filter_classes=None):
"""Processes a single uploaded image."""
print(f"Processing image with model: {model_name}, confidence: {confidence_threshold}")
try:
class_ids_to_filter = None
if filter_classes:
class_ids_to_filter = []
available_classes_dict = dict(get_all_classes())
name_to_id = {name: id for id, name in available_classes_dict.items()}
for class_str in filter_classes:
class_name_or_id = class_str.split(":")[0].strip()
class_id = -1
try:
class_id = int(class_name_or_id)
if class_id not in available_classes_dict:
class_id = -1
except ValueError:
if class_name_or_id in name_to_id:
class_id = name_to_id[class_name_or_id]
elif class_str in name_to_id: # Check full string "id: name"
class_id = name_to_id[class_str]
if class_id != -1:
class_ids_to_filter.append(class_id)
else:
print(f"Warning: Could not parse class filter: {class_str}")
print(f"Filtering image results for class IDs: {class_ids_to_filter}")
# Call the existing image processing logic
result_image, result_text, stats = image_processor.process_image(
image,
model_name,
confidence_threshold,
class_ids_to_filter
)
# Format stats for JSON display
formatted_stats = image_processor.format_json_for_display(stats)
# Prepare visualization data for the plot
plot_figure = None
if stats and "class_statistics" in stats and stats["class_statistics"]:
available_classes_dict = dict(get_all_classes())
viz_data = image_processor.prepare_visualization_data(stats, available_classes_dict)
if "error" not in viz_data:
plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
else:
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, viz_data["error"], ha='center', va='center', fontsize=12)
ax.axis('off')
plot_figure = fig
else:
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, "No detection data for plot", ha='center', va='center', fontsize=12)
ax.axis('off')
plot_figure = fig
# Extract scene analysis info
scene_analysis = stats.get("scene_analysis", {})
scene_desc = scene_analysis.get("description", "Scene analysis requires detected objects.")
# Ensure scene_desc is a string before adding HTML
if not isinstance(scene_desc, str):
scene_desc = str(scene_desc)
scene_desc_html = f"<div style='padding:10px; font-family:Arial, sans-serif; line-height:1.7;'>{scene_desc}</div>"
# Prepare activities list
activities_list = scene_analysis.get("possible_activities", [])
if not activities_list:
activities_list_data = [["No specific activities inferred"]] # Data for Dataframe
else:
activities_list_data = [[activity] for activity in activities_list]
# Prepare safety concerns list
safety_concerns_list = scene_analysis.get("safety_concerns", [])
if not safety_concerns_list:
safety_data = [["No safety concerns detected"]] # Data for Dataframe
else:
safety_data = [[concern] for concern in safety_concerns_list]
zones = scene_analysis.get("functional_zones", {})
lighting = scene_analysis.get("lighting_conditions", {"time_of_day": "unknown", "confidence": 0})
return (result_image, result_text, formatted_stats, plot_figure,
scene_desc_html, activities_list_data, safety_data, zones, lighting)
except Exception as e:
print(f"Error in handle_image_upload: {e}")
import traceback
error_msg = f"Error processing image: {str(e)}\n{traceback.format_exc()}"
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Processing Error", color="red", ha="center", va="center")
ax.axis('off')
# Ensure return structure matches outputs even on error
return (None, error_msg, {}, fig, f"<div>Error: {str(e)}</div>",
[["Error"]], [["Error"]], {}, {"time_of_day": "error", "confidence": 0})
def download_video_from_url(video_url, max_duration_minutes=10):
"""
Downloads a video from a YouTube URL and returns the local path to the downloaded file.
Args:
video_url (str): URL of the YouTube video to download
max_duration_minutes (int): Maximum allowed video duration in minutes
Returns:
tuple: (Path to the downloaded video file or None, Error message or None)
"""
try:
# Create a temporary directory to store the video
temp_dir = tempfile.gettempdir()
output_filename = f"downloaded_{uuid.uuid4().hex}.mp4"
output_path = os.path.join(temp_dir, output_filename)
# Check if it's a YouTube URL
if "youtube.com" in video_url or "youtu.be" in video_url:
# Import yt-dlp here to avoid dependency if not needed
import yt_dlp
# Setup yt-dlp options
ydl_opts = {
'format': 'best[ext=mp4]/best', # Best quality MP4 or best available format
'outtmpl': output_path,
'noplaylist': True,
'quiet': False, # Set to True to reduce output
'no_warnings': False,
}
# First extract info to check duration
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
print(f"Extracting info from YouTube URL: {video_url}")
info_dict = ydl.extract_info(video_url, download=False)
# Check if video exists
if not info_dict:
return None, "Could not retrieve video information. Please check the URL."
video_title = info_dict.get('title', 'Unknown Title')
duration = info_dict.get('duration', 0)
print(f"Video title: {video_title}")
print(f"Video duration: {duration} seconds")
# Check video duration
if duration > max_duration_minutes * 60:
return None, f"Video is too long ({duration} seconds). Maximum duration is {max_duration_minutes} minutes."
# Download the video
print(f"Downloading YouTube video: {video_title}")
ydl.download([video_url])
# Verify the file exists and has content
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
return None, "Download failed: Empty or missing file."
print(f"Successfully downloaded video to: {output_path}")
return output_path, None
else:
return None, "Only YouTube URLs are supported at this time. Please enter a valid YouTube URL."
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error downloading video: {e}\n{error_details}")
return None, f"Error downloading video: {str(e)}"
@spaces.GPU
def handle_video_upload(video_input, video_url, input_type, model_name, confidence_threshold, process_interval):
"""Handles video upload or URL input and calls the VideoProcessor."""
print(f"Received video request: input_type={input_type}")
video_path = None
# Handle based on input type
if input_type == "upload" and video_input:
print(f"Processing uploaded video file")
video_path = video_input
elif input_type == "url" and video_url:
print(f"Processing video from URL: {video_url}")
# Download video from URL
video_path, error_message = download_video_from_url(video_url)
if error_message:
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_message}</pre></div>"
return None, error_html, {"error": error_message}
else:
print("No valid video input provided.")
return None, "<div class='video-summary-content-wrapper'><pre>Please upload a video file or provide a valid video URL.</pre></div>", {}
print(f"Starting video processing with: model={model_name}, confidence={confidence_threshold}, interval={process_interval}")
try:
# Call the VideoProcessor method
output_video_path, summary_text, stats_dict = video_processor.process_video_file(
video_path=video_path,
model_name=model_name,
confidence_threshold=confidence_threshold,
process_interval=int(process_interval) # Ensure interval is int
)
print(f"Video processing function returned: path={output_video_path}, summary length={len(summary_text)}")
# Wrap processing summary in HTML tags for consistent styling with scene understanding page
summary_html = f"<div class='video-summary-content-wrapper'><pre>{summary_text}</pre></div>"
# Format statistics for better display
formatted_stats = {}
if stats_dict and isinstance(stats_dict, dict):
formatted_stats = stats_dict
return output_video_path, summary_html, formatted_stats
except Exception as e:
print(f"Error in handle_video_upload: {e}")
import traceback
error_msg = f"Error processing video: {str(e)}\n{traceback.format_exc()}"
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
return None, error_html, {"error": str(e)}
# Create Gradio Interface
def create_interface():
"""Creates the Gradio interface with Tabs."""
css = Style.get_css()
available_models = DetectionModel.get_available_models()
model_choices = [model["model_file"] for model in available_models]
class_choices_formatted = [f"{id}: {name}" for id, name in get_all_classes()] # Use formatted choices
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
# Header
with gr.Group(elem_classes="app-header"):
gr.HTML("""
<div style="text-align: center; width: 100%; padding: 2rem 0 3rem 0; background: linear-gradient(135deg, #f0f9ff, #e1f5fe);">
<h1 style="font-size: 3.5rem; margin-bottom: 0.5rem; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: bold; font-family: 'Arial', sans-serif;">VisionScout</h1>
<h2 style="color: #4A5568; font-size: 1.2rem; font-weight: 400; margin-top: 0.5rem; margin-bottom: 1.5rem; font-family: 'Arial', sans-serif;">Object Detection and Scene Understanding</h2>
<div style="display: flex; justify-content: center; gap: 10px; margin: 0.5rem 0;"><div style="height: 3px; width: 80px; background: linear-gradient(90deg, #38b2ac, #4299e1);"></div></div>
<div style="display: flex; justify-content: center; gap: 25px; margin-top: 1.5rem;">
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(66, 153, 225, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🖼️</span> Image Analysis</div>
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(56, 178, 172, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🎬</span> Video Analysis</div>
</div>
<div style="margin-top: 20px; padding: 10px 15px; background-color: rgba(255, 248, 230, 0.9); border-left: 3px solid #f6ad55; border-radius: 6px; max-width: 600px; margin-left: auto; margin-right: auto; text-align: left;">
<p style="margin: 0; font-size: 0.9rem; color: #805ad5; font-weight: 500;">
<span style="margin-right: 5px;">📱</span> iPhone users: HEIC images may not be supported.
<a href="https://cloudconvert.com/heic-to-jpg" target="_blank" style="color: #3182ce; text-decoration: underline;">Convert HEIC to JPG</a> before uploading if needed.
</p>
</div>
</div>
""")
# Main Content with Tabs
with gr.Tabs(elem_classes="tabs"):
# Tab 1: Image Processing
with gr.Tab("Image Processing"):
current_image_model = gr.State("yolov8m.pt") # State for image model selection
with gr.Row(equal_height=False): # Allow columns to have different heights
# Left Column: Image Input & Controls
with gr.Column(scale=4, elem_classes="input-panel"):
with gr.Group():
gr.HTML('<div class="section-heading">Upload Image</div>')
image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box")
with gr.Accordion("Image Analysis Settings", open=False):
image_model_dropdown = gr.Dropdown(
choices=model_choices,
value="yolov8m.pt", # Default for images
label="Select Model",
info="Choose speed vs. accuracy (n=fast, m=balanced, x=accurate)"
)
# Display model info
image_model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
image_confidence = gr.Slider(
minimum=0.1, maximum=0.9, value=0.25, step=0.05,
label="Confidence Threshold",
info="Minimum confidence for displaying a detected object"
)
with gr.Accordion("Filter Classes", open=False):
gr.HTML('<div class="section-heading" style="font-size: 1rem;">Common Categories</div>')
with gr.Row():
people_btn = gr.Button("People", size="sm")
vehicles_btn = gr.Button("Vehicles", size="sm")
animals_btn = gr.Button("Animals", size="sm")
objects_btn = gr.Button("Common Objects", size="sm")
image_class_filter = gr.Dropdown(
choices=class_choices_formatted, # Use formatted choices
multiselect=True,
label="Select Classes to Display",
info="Leave empty to show all detected objects"
)
image_detect_btn = gr.Button("Analyze Image", variant="primary", elem_classes="detect-btn")
with gr.Group(elem_classes="how-to-use"):
gr.HTML('<div class="section-heading">How to Use (Image)</div>')
gr.Markdown("""
1. Upload an image or use the camera
2. (Optional) Adjust settings like confidence threshold or model size (n, m, x)
3. Optionally filter to specific object classes
4. Click **Detect Objects** button
""")
# Image Examples
gr.Examples(
examples=[
"room_01.jpg",
"room_02.jpg",
"street_02.jpg",
"street_04.jpg"
],
inputs=image_input,
label="Example Images"
)
# Right Column: Image Results
with gr.Column(scale=6, elem_classes="output-panel"):
with gr.Tabs(elem_classes="tabs"):
with gr.Tab("Detection Result"):
image_result_image = gr.Image(type="pil", label="Detection Result")
gr.HTML('<div class="section-heading">Detection Details</div>')
image_result_text = gr.Textbox(label=None, lines=10, elem_id="detection-details", container=False)
with gr.Tab("Scene Understanding"):
gr.HTML('<div class="section-heading">Scene Analysis</div>')
gr.HTML("""
<details class="info-details" style="margin: 5px 0 15px 0;">
<summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
🔍 The AI Vision Scout Report: Click for important notes about this analysis
</summary>
<div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
<p style="font-size: 13px; color: #718096; margin: 0;">
<b>About this analysis:</b> This analysis is the model's best guess based on visible objects.
Like human scouts, it sometimes gets lost or sees things that aren't there (but don't we all?).
Consider this an educated opinion rather than absolute truth. For critical applications, always verify with human eyes! 🧐
</p>
</div>
</details>
""")
# Wrap HTML description for potential styling
image_scene_description_html = gr.HTML(label=None, elem_id="scene_analysis_description_text")
with gr.Row():
with gr.Column(scale=1):
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Possible Activities</div>')
image_activities_list = gr.Dataframe(headers=["Activity"], datatype=["str"], row_count=5, col_count=1, wrap=True)
with gr.Column(scale=1):
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Safety Concerns</div>')
image_safety_list = gr.Dataframe(headers=["Concern"], datatype=["str"], row_count=5, col_count=1, wrap=True)
gr.HTML('<div class="section-heading">Functional Zones</div>')
image_zones_json = gr.JSON(label=None, elem_classes="json-box")
gr.HTML('<div class="section-heading">Lighting Conditions</div>')
image_lighting_info = gr.JSON(label=None, elem_classes="json-box")
with gr.Tab("Statistics"):
with gr.Row():
with gr.Column(scale=3, elem_classes="plot-column"):
gr.HTML('<div class="section-heading">Object Distribution</div>')
image_plot_output = gr.Plot(label=None, elem_classes="large-plot-container")
with gr.Column(scale=2, elem_classes="stats-column"):
gr.HTML('<div class="section-heading">Detection Statistics</div>')
image_stats_json = gr.JSON(label=None, elem_classes="enhanced-json-display")
# Tab 2: Video Processing
with gr.Tab("Video Processing"):
with gr.Row(equal_height=False):
# Left Column: Video Input & Controls
with gr.Column(scale=4, elem_classes="input-panel"):
with gr.Group():
gr.HTML('<div class="section-heading">Video Input</div>')
# Add input type selection
video_input_type = gr.Radio(
["upload", "url"],
label="Input Method",
value="upload",
info="Choose how to provide the video"
)
# File upload (will be shown/hidden based on selection)
with gr.Group(elem_id="upload-video-group"):
video_input = gr.Video(
label="Upload a video file (MP4, AVI, MOV)",
sources=["upload"],
visible=True
)
# URL input (will be shown/hidden based on selection)
with gr.Group(elem_id="url-video-group"):
video_url_input = gr.Textbox(
label="Enter video URL (YouTube or direct video link)",
placeholder="https://www.youtube.com/watch?v=...",
visible=False,
elem_classes="custom-video-url-input"
)
gr.HTML("""
<div style="padding: 8px; margin-top: 5px; background-color: #fff8f8; border-radius: 4px; border-left: 3px solid #f87171; font-size: 12px;">
<p style="margin: 0; color: #4b5563;">
Note: Currently only YouTube URLs are supported. Maximum video duration is 10 minutes.
</p>
</div>
""")
with gr.Accordion("Video Analysis Settings", open=True):
video_model_dropdown = gr.Dropdown(
choices=model_choices,
value="yolov8n.pt", # Default 'n' for video
label="Select Model (Video)",
info="Faster models (like 'n') are recommended"
)
video_confidence = gr.Slider(
minimum=0.1, maximum=0.9, value=0.4, step=0.05,
label="Confidence Threshold (Video)"
)
video_process_interval = gr.Slider(
minimum=1, maximum=60, value=10, step=1, # Allow up to 60 frame interval
label="Processing Interval (Frames)",
info="Analyze every Nth frame (higher value = faster)"
)
video_process_btn = gr.Button("Process Video", variant="primary", elem_classes="detect-btn")
with gr.Group(elem_classes="how-to-use"):
gr.HTML('<div class="section-heading">How to Use (Video)</div>')
gr.Markdown("""
1. Choose your input method: Upload a file or enter a URL.
2. Adjust settings if needed (using a faster model and larger interval is recommended for longer videos).
3. Click "Process Video". **Processing can take a significant amount of time.**
4. The annotated video and summary will appear on the right when finished.
""")
# Add video examples
gr.HTML('<div class="section-heading">Example Videos</div>')
gr.HTML("""
<div style="padding: 10px; background-color: #f0f7ff; border-radius: 6px; margin-bottom: 15px;">
<p style="font-size: 14px; color: #4A5568; margin: 0;">
Upload any video containing objects that YOLO can detect. For testing, find sample videos
<a href="https://www.pexels.com/search/videos/street/" target="_blank" style="color: #3182ce; text-decoration: underline;">here</a>.
</p>
</div>
""")
# Right Column: Video Results
with gr.Column(scale=6, elem_classes="output-panel video-result-panel"):
gr.HTML("""
<div class="section-heading">Video Result</div>
<details class="info-details" style="margin: 5px 0 15px 0;">
<summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
🎬 Video Processing Notes
</summary>
<div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
<p style="font-size: 13px; color: #718096; margin: 0;">
The processed video includes bounding boxes around detected objects. For longer videos,
consider using a faster model (like YOLOv8n) and a higher frame interval to reduce processing time.
</p>
</div>
</details>
""")
video_output = gr.Video(label="Processed Video", elem_classes="video-output-container") # Output for the processed video file
gr.HTML('<div class="section-heading">Processing Summary</div>')
# 使用HTML顯示影片的摘要
video_summary_text = gr.HTML(
label=None,
elem_id="video-summary-html-output"
)
gr.HTML('<div class="section-heading">Aggregated Statistics</div>')
video_stats_json = gr.JSON(label=None, elem_classes="video-stats-display") # Display statistics
# Event Listeners
# Image Model Change Handler
image_model_dropdown.change(
fn=lambda model: (model, DetectionModel.get_model_description(model)),
inputs=[image_model_dropdown],
outputs=[current_image_model, image_model_info] # Update state and description
)
# Image Filter Buttons
available_classes_list = get_all_classes() # Get list of (id, name)
people_classes_ids = [0]
vehicles_classes_ids = [1, 2, 3, 4, 5, 6, 7, 8]
animals_classes_ids = list(range(14, 24))
common_objects_ids = [39, 41, 42, 43, 44, 45, 56, 57, 60, 62, 63, 67, 73] # Bottle, cup, fork, knife, spoon, bowl, chair, couch, table, tv, laptop, phone, book
people_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in people_classes_ids], outputs=image_class_filter)
vehicles_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in vehicles_classes_ids], outputs=image_class_filter)
animals_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in animals_classes_ids], outputs=image_class_filter)
objects_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in common_objects_ids], outputs=image_class_filter)
video_input_type.change(
fn=lambda input_type: [
# Show/hide file upload
gr.update(visible=(input_type == "upload")),
# Show/hide URL input
gr.update(visible=(input_type == "url"))
],
inputs=[video_input_type],
outputs=[video_input, video_url_input]
)
# Image Processing Button Click
image_detect_btn.click(
fn=handle_image_upload,
inputs=[image_input, image_model_dropdown, image_confidence, image_class_filter],
outputs=[
image_result_image, image_result_text, image_stats_json, image_plot_output,
image_scene_description_html, image_activities_list, image_safety_list, image_zones_json,
image_lighting_info
]
)
video_process_btn.click(
fn=handle_video_upload,
inputs=[
video_input,
video_url_input,
video_input_type,
video_model_dropdown,
video_confidence,
video_process_interval
],
outputs=[video_output, video_summary_text, video_stats_json]
)
# Footer
gr.HTML("""
<div class="footer" style="padding: 25px 0; text-align: center; background: linear-gradient(to right, #f5f9fc, #e1f5fe); border-top: 1px solid #e2e8f0; margin-top: 30px;">
<div style="margin-bottom: 15px;">
<p style="font-size: 14px; color: #4A5568; margin: 5px 0;">Powered by YOLOv8, CLIP and Ultralytics • Created with Gradio</p>
</div>
<div style="display: flex; align-items: center; justify-content: center; gap: 20px; margin-top: 15px;">
<p style="font-family: 'Arial', sans-serif; font-size: 14px; font-weight: 500; letter-spacing: 2px; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0; text-transform: uppercase; display: inline-block;">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/VisionScout" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-VisionScout-4299e1?logo=github&style=for-the-badge">
</a>
</div>
</div>
""")
return demo
if __name__ == "__main__":
demo_interface = create_interface()
demo_interface.launch()
|