Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update vit_Training.py
Browse files- vit_Training.py +17 -18
    	
        vit_Training.py
    CHANGED
    
    | @@ -64,25 +64,24 @@ class Custom_VIT_Model: | |
| 64 | 
             
                    else:
         | 
| 65 | 
             
                        self.df = pd.DataFrame(columns=['image_path', 'label'])
         | 
| 66 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 67 |  | 
| 68 | 
            -
             | 
| 69 | 
            -
             | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
                # Append the new entry to the existing DataFrame
         | 
| 73 | 
            -
                self.df = pd.concat([self.df, new_entry], ignore_index=True)
         | 
| 74 | 
            -
                
         | 
| 75 | 
            -
                # Save the updated DataFrame to the specified CSV file
         | 
| 76 | 
            -
                self.df.to_csv(self.data_file, index=False)
         | 
| 77 | 
            -
             | 
| 78 | 
            -
                # Print the current state of the training data for debugging
         | 
| 79 | 
            -
                print("Current training data:")
         | 
| 80 | 
            -
                print(self.df)
         | 
| 81 | 
            -
             | 
| 82 | 
            -
                # Check if we have 100 images for retraining
         | 
| 83 | 
            -
                if len(self.df) >= 100:
         | 
| 84 | 
            -
                    print("Retraining the model as we have enough data.")
         | 
| 85 | 
            -
                    self.retrain_model()
         | 
| 86 |  | 
| 87 |  | 
| 88 |  | 
|  | |
| 64 | 
             
                    else:
         | 
| 65 | 
             
                        self.df = pd.DataFrame(columns=['image_path', 'label'])
         | 
| 66 |  | 
| 67 | 
            +
                def add_data(self, image_path: str, label: int):
         | 
| 68 | 
            +
                    # Create a new DataFrame entry
         | 
| 69 | 
            +
                    new_entry = pd.DataFrame({'image_path': [image_path], 'label': [label]})
         | 
| 70 | 
            +
                    
         | 
| 71 | 
            +
                    # Append the new entry to the existing DataFrame
         | 
| 72 | 
            +
                    self.df = pd.concat([self.df, new_entry], ignore_index=True)
         | 
| 73 | 
            +
                    
         | 
| 74 | 
            +
                    # Save the updated DataFrame to the specified CSV file
         | 
| 75 | 
            +
                    self.df.to_csv(self.data_file, index=False)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    # Print the current state of the training data for debugging
         | 
| 78 | 
            +
                    print("Current training data:")
         | 
| 79 | 
            +
                    print(self.df)
         | 
| 80 |  | 
| 81 | 
            +
                    # Check if we have 100 images for retraining
         | 
| 82 | 
            +
                    if len(self.df) >= 100:
         | 
| 83 | 
            +
                        print("Retraining the model as we have enough data.")
         | 
| 84 | 
            +
                        self.retrain_model()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 85 |  | 
| 86 |  | 
| 87 |  | 
