Spaces:
Sleeping
Sleeping
Update vit_Training.py
Browse files- vit_Training.py +19 -8
vit_Training.py
CHANGED
@@ -64,16 +64,27 @@ class Custom_VIT_Model:
|
|
64 |
else:
|
65 |
self.df = pd.DataFrame(columns=['image_path', 'label'])
|
66 |
|
67 |
-
def add_data(self, image_path: str, label: int):
|
68 |
-
new_entry = pd.DataFrame({'image_path': [image_path], 'label': [label]})
|
69 |
-
self.df = pd.concat([self.df, new_entry], ignore_index=True)
|
70 |
-
self.df.to_csv(self.data_file, index=False)
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
if len(self.df) >= 100:
|
76 |
-
self.retrain_model()
|
77 |
|
78 |
def retrain_model(self):
|
79 |
# Shuffle and split the data
|
|
|
64 |
else:
|
65 |
self.df = pd.DataFrame(columns=['image_path', 'label'])
|
66 |
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
def add_data(self, image_path: str, label: int):
|
69 |
+
# Create a new DataFrame entry
|
70 |
+
new_entry = pd.DataFrame({'image_path': [image_path], 'label': [label]})
|
71 |
+
|
72 |
+
# Append the new entry to the existing DataFrame
|
73 |
+
self.df = pd.concat([self.df, new_entry], ignore_index=True)
|
74 |
+
|
75 |
+
# Save the updated DataFrame to the specified CSV file
|
76 |
+
self.df.to_csv(self.data_file, index=False)
|
77 |
+
|
78 |
+
# Print the current state of the training data for debugging
|
79 |
+
print("Current training data:")
|
80 |
+
print(self.df)
|
81 |
+
|
82 |
+
# Check if we have 100 images for retraining
|
83 |
+
if len(self.df) >= 100:
|
84 |
+
print("Retraining the model as we have enough data.")
|
85 |
+
self.retrain_model()
|
86 |
|
87 |
+
|
|
|
|
|
88 |
|
89 |
def retrain_model(self):
|
90 |
# Shuffle and split the data
|