File size: 1,805 Bytes
0ceff0a
 
b60cbe3
fd4d84b
0ceff0a
 
b60cbe3
991fbeb
 
 
0ceff0a
75f06df
991fbeb
 
 
b60cbe3
991fbeb
93c87bc
991fbeb
074b0e2
991fbeb
 
 
b60cbe3
991fbeb
 
75f06df
b60cbe3
 
 
 
 
 
 
 
 
991fbeb
b60cbe3
 
 
 
 
 
 
93ac46b
b60cbe3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
from PIL import Image
from vit_model_test import CustomModel  # Ensure this is the correct import for your model
from vit_Training import Custom_VIT_Model

# Initialize the model
model = CustomModel()

# Variable to store the last prediction result
last_prediction = None

def predict(image: Image.Image):
    global last_prediction
    label, confidence = model.predict(image)
    result = "AI image" if label == 1 else "Real image"
    last_prediction = (image, label)  # Store the image and label for feedback
    return result, f"Confidence: {confidence:.2f}%"

def report_feedback():
    global last_prediction
    if last_prediction is not None:
        image, predicted_label = last_prediction
        correct_label = 1 if predicted_label == 0 else 0  # Invert the label
        model.add_data(image, correct_label)  # Pass the incorrect prediction to the model
        return "Feedback recorded. Thank you!"
    return "No prediction available to report."

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("### Vision Transformer Model")
    gr.Markdown("Upload an image to classify it using the Vision Transformer model.")
    
    image_input = gr.Image(type="pil", label="Upload Image")
    prediction_output = gr.Textbox(label="Prediction", interactive=False)
    confidence_output = gr.Textbox(label="Confidence", interactive=False)
    feedback_output = gr.Textbox(label="Feedback Status", interactive=False)

    submit_btn = gr.Button("Submit")
    feedback_btn = gr.Button("The model was wrong")

    submit_btn.click(predict, inputs=image_input, outputs=[prediction_output, confidence_output])
    feedback_btn.click(report_feedback, outputs=feedback_output)

# Launch the Gradio interface
if __name__ == "__main__":
    demo.launch(share=True)