Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
from vit_model_test import
|
4 |
|
5 |
# Initialize the model
|
6 |
-
model =
|
|
|
|
|
|
|
7 |
|
8 |
def predict(image: Image.Image):
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
demo = gr.Interface(
|
16 |
-
fn=predict,
|
17 |
-
inputs=gr.Image(type="pil"),
|
18 |
-
outputs=[gr.Textbox(), gr.Textbox()],
|
19 |
-
title="Vision Transformer Model",
|
20 |
-
description="Upload an image to classify it using the Vision Transformer model.",
|
21 |
-
theme
|
22 |
)
|
23 |
|
|
|
|
|
|
|
|
|
24 |
# Launch the Gradio interface
|
25 |
if __name__ == "__main__":
|
26 |
demo.launch(share=True)
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
+
from vit_model_test import Custom_VIT_Model # Ensure you import the correct class
|
4 |
|
5 |
# Initialize the model
|
6 |
+
model = Custom_VIT_Model()
|
7 |
+
|
8 |
+
# Variable to store the last prediction result
|
9 |
+
last_prediction = None
|
10 |
|
11 |
def predict(image: Image.Image):
|
12 |
+
global last_prediction
|
13 |
+
label, confidence = model.predict(image)
|
14 |
+
result = "AI image" if label == 1 else "Real image"
|
15 |
+
last_prediction = (image, label) # Store the image and prediction label
|
16 |
+
return result, f"Confidence: {confidence:.2f}%"
|
17 |
|
18 |
+
def report_feedback():
|
19 |
+
if last_prediction is not None:
|
20 |
+
image, predicted_label = last_prediction
|
21 |
+
correct_label = 1 if predicted_label == 0 else 0 # Invert the label
|
22 |
+
model.add_data(image, correct_label) # Add incorrect prediction to model
|
23 |
+
return "Feedback recorded. Thank you!"
|
24 |
+
return "No prediction available to report."
|
25 |
|
26 |
+
# Define the Gradio interface for prediction
|
27 |
demo = gr.Interface(
|
28 |
+
fn=predict,
|
29 |
+
inputs=gr.Image(type="pil"),
|
30 |
+
outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Confidence")],
|
31 |
+
title="Vision Transformer Model",
|
32 |
+
description="Upload an image to classify it using the Vision Transformer model.",
|
33 |
+
theme=gr.themes.Soft()
|
34 |
)
|
35 |
|
36 |
+
# Define the feedback button
|
37 |
+
feedback_button = gr.Button("The model was wrong")
|
38 |
+
feedback_button.click(report_feedback)
|
39 |
+
|
40 |
# Launch the Gradio interface
|
41 |
if __name__ == "__main__":
|
42 |
demo.launch(share=True)
|
43 |
+
feedback_button.launch()
|