Spaces:
Runtime error
Runtime error
title: action_generation | |
datasets: | |
- none | |
tags: | |
- evaluate | |
- metric | |
description: 'TODO: add a description here' | |
sdk: gradio | |
sdk_version: 5.6.0 | |
app_file: app.py | |
pinned: false | |
# Metric Card for action_generation | |
## Metric Description | |
Evaluate the result of action generation task. | |
Consider the output format `/class/phrase`. Compute the scores for both `/class` and `phrase` separately, and then perform a weighted sum of these scores. | |
## How to Use | |
```python | |
import evaluate | |
valid_labels = [ | |
"/開箱", | |
"/教學", | |
"/表達", | |
"/分享/外部資訊", | |
"/分享/個人資訊", | |
"/推薦/產品", | |
"/推薦/服務", | |
"/推薦/其他", | |
"" | |
] | |
predictions = [ | |
["/開箱/xxx", "/教學/yyy", "/表達/zzz"], | |
["/分享/外部資訊/aaa", "/教學/yyy", "/表達/zzz", "/分享/個人資訊/bbb"] | |
] | |
references = [ | |
["/開箱/xxx", "/教學/yyy", "/表達/zzz"], | |
["/推薦/產品/bbb", "/教學/yyy", "/表達/zzz"] | |
] | |
metric = evaluate.load("DarrenChensformer/action_generation") | |
result = metric.compute(predictions=predictions, references=references, valid_labels=valid_labels, detailed_scores=True) | |
print(result) | |
``` | |
``` | |
{'class': {'precision': 0.7143, 'recall': 0.8333, 'f1': 0.7692}, 'phrase': {'precision': 0.8571, 'recall': 1.0, 'f1': 0.9231}, 'weighted_sum': {'precision': 0.7429, 'recall': 0.8666, 'f1': 0.8}} | |
``` | |
### Inputs | |
*List all input arguments in the format below* | |
- **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).* | |
### Output Values | |
*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}* | |
*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."* | |
### Examples | |
*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.* | |
## Limitations and Bias | |
*Note any known limitations or biases that the metric has, with links and references if possible.* | |
## Citation | |
*Cite the source where this metric was introduced.* | |
## Further References | |
*Add any useful further references.* |