Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| import json | |
| import os | |
| import re | |
| from PyPDF2 import PdfReader | |
| from collections import defaultdict | |
| from typing import Dict, List, Optional, Tuple, Union | |
| import html | |
| from pathlib import Path | |
| import fitz # PyMuPDF | |
| import pytesseract | |
| from PIL import Image | |
| import io | |
| import secrets | |
| import string | |
| from huggingface_hub import HfApi, HfFolder | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import time | |
| import logging | |
| import asyncio | |
| from functools import lru_cache | |
| import hashlib | |
| from concurrent.futures import ThreadPoolExecutor | |
| from pydantic import BaseModel | |
| import plotly.express as px | |
| import pdfplumber | |
| from io import BytesIO | |
| import base64 | |
| import datetime | |
| from cryptography.fernet import Fernet | |
| import calendar | |
| from dateutil.relativedelta import relativedelta | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| # Enhanced Configuration | |
| PROFILES_DIR = "student_profiles" | |
| ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"] | |
| MAX_FILE_SIZE_MB = 10 | |
| MIN_AGE = 5 | |
| MAX_AGE = 120 | |
| SESSION_TOKEN_LENGTH = 32 | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| ENCRYPTION_KEY = os.getenv("ENCRYPTION_KEY", Fernet.generate_key().decode()) | |
| SESSION_TIMEOUT = 3600 * 3 | |
| MAX_CONTEXT_HISTORY = 10 | |
| MAX_PROFILE_LOAD_ATTEMPTS = 3 | |
| # Initialize logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| handlers=[ | |
| logging.FileHandler('transcript_parser.log'), | |
| logging.StreamHandler() | |
| ] | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # Model configuration | |
| MODEL_NAME = "deepseek-ai/deepseek-llm-7b" | |
| # Initialize Hugging Face API | |
| if HF_TOKEN: | |
| hf_api = None | |
| for attempt in range(3): | |
| try: | |
| hf_api = HfApi(token=HF_TOKEN) | |
| HfFolder.save_token(HF_TOKEN) | |
| logger.info("Hugging Face API initialized successfully") | |
| break | |
| except Exception as e: | |
| logger.error(f"Attempt {attempt + 1} failed to initialize Hugging Face API: {str(e)}") | |
| time.sleep(2 ** attempt) | |
| # ========== LEARNING STYLE QUIZ ========== | |
| class LearningStyleQuiz: | |
| def __init__(self): | |
| self.questions = [ | |
| "When learning something new, I prefer to:", | |
| "I remember information best when I:", | |
| "When giving directions, I:", | |
| "When I'm bored, I tend to:", | |
| "When learning a new skill, I prefer to:", | |
| "When studying, I like to:", | |
| "I prefer teachers who:", | |
| "When solving problems, I:" | |
| ] | |
| self.options = [ | |
| ["See diagrams and charts", "Listen to explanations", "Read about it", "Try it out hands-on"], | |
| ["See pictures or diagrams", "Hear someone explain it", "Read about it", "Do something physical with it"], | |
| ["Draw a map", "Give verbal instructions", "Write down directions", "Demonstrate or guide physically"], | |
| ["Doodle or look around", "Talk to myself or others", "Read or imagine things", "Fidget or move around"], | |
| ["Watch demonstrations", "Listen to instructions", "Read instructions", "Jump in and try it"], | |
| ["Use highlighters and diagrams", "Discuss with others", "Read and take notes", "Move around or use objects"], | |
| ["Use visual aids", "Give interesting lectures", "Provide reading materials", "Include hands-on activities"], | |
| ["Draw pictures or diagrams", "Talk through options", "Make lists", "Try different solutions physically"] | |
| ] | |
| self.learning_styles = { | |
| 'visual': "**Visual** learners prefer seeing information in charts, diagrams, and pictures.", | |
| 'auditory': "**Auditory** learners prefer hearing information spoken and learn best through lectures and discussions.", | |
| 'reading/writing': "**Reading/Writing** learners prefer information displayed as words and learn best through reading and note-taking.", | |
| 'kinesthetic': "**Kinesthetic** learners prefer physical experience and learn best through hands-on activities and movement." | |
| } | |
| def evaluate_quiz(self, *answers): | |
| """Evaluate quiz answers and determine learning style""" | |
| if not answers or any(a is None for a in answers): | |
| raise gr.Error("Please answer all questions before submitting") | |
| style_counts = { | |
| 'visual': 0, | |
| 'auditory': 0, | |
| 'reading/writing': 0, | |
| 'kinesthetic': 0 | |
| } | |
| for answer in answers: | |
| if answer.startswith("See") or answer.startswith("Draw") or answer.startswith("Watch") or "diagram" in answer.lower(): | |
| style_counts['visual'] += 1 | |
| elif answer.startswith("Listen") or answer.startswith("Hear") or answer.startswith("Talk") or "lecture" in answer.lower(): | |
| style_counts['auditory'] += 1 | |
| elif answer.startswith("Read") or "note" in answer.lower() or "write" in answer.lower(): | |
| style_counts['reading/writing'] += 1 | |
| elif answer.startswith("Try") or "physical" in answer.lower() or "hands-on" in answer.lower(): | |
| style_counts['kinesthetic'] += 1 | |
| primary_style = max(style_counts, key=style_counts.get) | |
| secondary_styles = sorted(style_counts.items(), key=lambda x: x[1], reverse=True)[1:3] | |
| result = [ | |
| "## π― Your Learning Style Results", | |
| f"Your primary learning style is **{primary_style.capitalize()}**", | |
| self.learning_styles[primary_style], | |
| "", | |
| "### Tips for Your Learning Style:" | |
| ] | |
| if primary_style == 'visual': | |
| result.extend([ | |
| "- Use color coding in your notes", | |
| "- Create mind maps and diagrams", | |
| "- Watch educational videos to visualize concepts", | |
| "- Highlight or underline important information" | |
| ]) | |
| elif primary_style == 'auditory': | |
| result.extend([ | |
| "- Record lectures and listen to them", | |
| "- Explain concepts out loud to yourself", | |
| "- Participate in study groups", | |
| "- Use rhymes or songs to remember information" | |
| ]) | |
| elif primary_style == 'reading/writing': | |
| result.extend([ | |
| "- Write detailed summaries in your own words", | |
| "- Create question-answer sets for each topic", | |
| "- Rewrite your notes to reinforce learning", | |
| "- Read textbooks and articles on the subject" | |
| ]) | |
| elif primary_style == 'kinesthetic': | |
| result.extend([ | |
| "- Use hands-on activities when possible", | |
| "- Study while moving or pacing", | |
| "- Create physical models to represent concepts", | |
| "- Take frequent short breaks to move around" | |
| ]) | |
| result.extend([ | |
| "", | |
| "### Secondary Learning Styles:", | |
| f"1. {secondary_styles[0][0].capitalize()}", | |
| f"2. {secondary_styles[1][0].capitalize()}" | |
| ]) | |
| return "\n".join(result) | |
| # Initialize learning style quiz | |
| learning_style_quiz = LearningStyleQuiz() | |
| # ========== MODEL LOADER ========== | |
| class ModelLoader: | |
| def __init__(self): | |
| self.model = None | |
| self.tokenizer = None | |
| self.loaded = False | |
| self.loading = False | |
| self.error = None | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.load_attempts = 0 | |
| self.max_retries = 3 | |
| def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]: | |
| if self.loaded: | |
| return self.model, self.tokenizer | |
| if self.loading: | |
| while self.loading and self.load_attempts < self.max_retries: | |
| time.sleep(0.5) | |
| return self.model, self.tokenizer | |
| self.loading = True | |
| self.load_attempts += 1 | |
| try: | |
| if progress: | |
| progress(0.1, desc="Initializing model environment...") | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_peak_memory_stats() | |
| if progress: | |
| progress(0.2, desc="Loading tokenizer...") | |
| tokenizer = None | |
| for attempt in range(3): | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_NAME, | |
| trust_remote_code=True, | |
| use_fast=True | |
| ) | |
| break | |
| except Exception as e: | |
| if attempt == 2: | |
| raise | |
| logger.warning(f"Tokenizer loading attempt {attempt + 1} failed: {str(e)}") | |
| time.sleep(2 ** attempt) | |
| if progress: | |
| progress(0.5, desc="Loading model (this may take a few minutes)...") | |
| model_kwargs = { | |
| "trust_remote_code": True, | |
| "torch_dtype": torch.float16 if self.device == "cuda" else torch.float32, | |
| "device_map": "auto" if self.device == "cuda" else None, | |
| "low_cpu_mem_usage": True, | |
| "offload_folder": "offload" | |
| } | |
| if torch.cuda.device_count() > 1: | |
| model_kwargs["max_memory"] = {i: "20GiB" for i in range(torch.cuda.device_count())} | |
| model = None | |
| for attempt in range(3): | |
| try: | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| **model_kwargs | |
| ) | |
| break | |
| except torch.cuda.OutOfMemoryError: | |
| logger.warning("CUDA OOM encountered, trying CPU offloading") | |
| model_kwargs["device_map"] = None | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| **model_kwargs | |
| ).to('cpu') | |
| self.device = 'cpu' | |
| break | |
| except Exception as e: | |
| if attempt == 2: | |
| raise | |
| logger.warning(f"Model loading attempt {attempt + 1} failed: {str(e)}") | |
| time.sleep(2 ** attempt) | |
| if progress: | |
| progress(0.8, desc="Verifying model...") | |
| test_input = tokenizer("Test", return_tensors="pt").to(self.device) | |
| with torch.no_grad(): | |
| _ = model.generate(**test_input, max_new_tokens=1) | |
| self.model = model.eval() | |
| self.tokenizer = tokenizer | |
| self.loaded = True | |
| logger.info("Model loaded successfully") | |
| return model, tokenizer | |
| except Exception as e: | |
| self.error = f"Model loading failed after {self.load_attempts} attempts: {str(e)}" | |
| logger.error(self.error) | |
| if self.load_attempts < self.max_retries: | |
| logger.info(f"Retrying model loading ({self.load_attempts}/{self.max_retries})") | |
| time.sleep(5) | |
| return self.load_model(progress) | |
| return None, None | |
| finally: | |
| self.loading = False | |
| # Initialize model loader | |
| model_loader = ModelLoader() | |
| def get_model_and_tokenizer(): | |
| return model_loader.load_model() | |
| # ========== TRANSCRIPT PARSER ========== | |
| class MiamiDadeTranscriptParser: | |
| def __init__(self): | |
| self.student_info_pattern = re.compile( | |
| r"(\d{7}) - (.*?)\s*\|\s*Current Grade:\s*(\d+)\s*\|\s*YOG\s*(\d{4})" | |
| r"\s*\|\s*Weighted GPA\s*([\d.]+)\s*\|\s*Comm Serv Date\s*(\d{2}/\d{2}/\d{4})" | |
| r"\s*\|\s*Total Credits Earned\s*([\d.]+)" | |
| ) | |
| self.requirement_pattern = re.compile( | |
| r"([A-Z]-[A-Za-z ]+)\s*\|\s*([^|]+)\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([^|]+)%" | |
| ) | |
| self.course_pattern = re.compile( | |
| r"([A-Z]-[A-Za-z ]+)\s*\|\s*(\d{4}-\d{4})\s*\|\s*(\d{2})\s*\|\s*([A-Z0-9]+)\s*\|\s*([^|]+)\|" | |
| r"\s*([A-Z0-9])\s*\|\s*(\d+)\s*\|\s*([A-Z])\s*\|\s*([A-Z])\s*\|\s*([\d.]+|inProgress)" | |
| ) | |
| def parse_transcript(self, file_path: str) -> Dict: | |
| """Parse Miami-Dade County transcript PDF""" | |
| with pdfplumber.open(file_path) as pdf: | |
| text = "\n".join(page.extract_text() for page in pdf.pages) | |
| parsed_data = { | |
| 'student_info': self._parse_student_info(text), | |
| 'requirements': self._parse_requirements(text), | |
| 'course_history': self._parse_courses(text) | |
| } | |
| return parsed_data | |
| def _parse_student_info(self, text: str) -> Dict: | |
| """Extract student information""" | |
| match = self.student_info_pattern.search(text) | |
| if not match: | |
| return {} | |
| return { | |
| 'id': match.group(1), | |
| 'name': match.group(2).strip(), | |
| 'grade': match.group(3), | |
| 'year_of_graduation': match.group(4), | |
| 'weighted_gpa': float(match.group(5)), | |
| 'community_service_date': match.group(6), | |
| 'total_credits': float(match.group(7)), | |
| 'district': 'Miami-Dade' | |
| } | |
| def _parse_requirements(self, text: str) -> Dict: | |
| """Parse graduation requirements section""" | |
| requirements = {} | |
| for match in self.requirement_pattern.finditer(text): | |
| requirements[match.group(1).strip()] = { | |
| 'description': match.group(2).strip(), | |
| 'required': float(match.group(3)), | |
| 'waived': float(match.group(4)), | |
| 'completed': float(match.group(5)), | |
| 'percent_complete': float(match.group(6)) | |
| } | |
| return requirements | |
| def _parse_courses(self, text: str) -> List[Dict]: | |
| """Parse course history section""" | |
| courses = [] | |
| for match in self.course_pattern.finditer(text): | |
| courses.append({ | |
| 'requirement': match.group(1).strip(), | |
| 'school_year': match.group(2), | |
| 'grade_level': match.group(3), | |
| 'course_code': match.group(4), | |
| 'description': match.group(5).strip(), | |
| 'term': match.group(6), | |
| 'district_number': match.group(7), | |
| 'included': match.group(8), | |
| 'credits': 0 if 'inProgress' in match.group(9) else float(match.group(9)), | |
| 'status': 'In Progress' if 'inProgress' in match.group(9) else 'Completed' | |
| }) | |
| return courses | |
| # Initialize transcript parser | |
| transcript_parser = MiamiDadeTranscriptParser() | |
| # ========== ACADEMIC ANALYZER ========== | |
| class AcademicAnalyzer: | |
| def __init__(self): | |
| self.gpa_scale = { | |
| 'A': 4.0, 'A-': 3.7, 'B+': 3.3, 'B': 3.0, 'B-': 2.7, | |
| 'C+': 2.3, 'C': 2.0, 'C-': 1.7, 'D+': 1.3, 'D': 1.0, 'F': 0.0 | |
| } | |
| self.college_tiers = { | |
| 'ivy_league': {'gpa': 4.3, 'rigor': 8, 'service': 100}, | |
| 'top_tier': {'gpa': 4.0, 'rigor': 6, 'service': 80}, | |
| 'competitive': {'gpa': 3.7, 'rigor': 4, 'service': 60}, | |
| 'good': {'gpa': 3.3, 'rigor': 2, 'service': 40}, | |
| 'average': {'gpa': 2.7, 'rigor': 1, 'service': 20} | |
| } | |
| def analyze_gpa(self, parsed_data: Dict) -> Dict: | |
| analysis = { | |
| 'rating': '', | |
| 'description': '', | |
| 'comparison': '', | |
| 'improvement_tips': [] | |
| } | |
| try: | |
| weighted_gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0)) | |
| unweighted_gpa = float(parsed_data.get('student_info', {}).get('unweighted_gpa', 0)) | |
| if weighted_gpa >= 4.5: | |
| analysis['rating'] = 'Excellent' | |
| analysis['description'] = "π You're in the top tier of students with a highly competitive GPA." | |
| analysis['comparison'] = "This puts you in the top 5% of students nationally." | |
| analysis['improvement_tips'] = [ | |
| "Consider taking advanced courses to challenge yourself", | |
| "Look into college-level courses or research opportunities" | |
| ] | |
| elif weighted_gpa >= 4.0: | |
| analysis['rating'] = 'Strong' | |
| analysis['description'] = "π Your GPA is strong and competitive for most colleges." | |
| analysis['comparison'] = "This is above the national average and competitive for many universities." | |
| analysis['improvement_tips'] = [ | |
| "Maintain your current study habits", | |
| "Consider adding 1-2 more challenging courses" | |
| ] | |
| elif weighted_gpa >= 3.5: | |
| analysis['rating'] = 'Good' | |
| analysis['description'] = "βΉοΈ Your GPA is good but could be improved for more competitive schools." | |
| analysis['comparison'] = "This is slightly above the national average." | |
| analysis['improvement_tips'] = [ | |
| "Focus on improving in your weaker subjects", | |
| "Consider getting tutoring for challenging courses", | |
| "Develop better study habits and time management" | |
| ] | |
| elif weighted_gpa >= 3.0: | |
| analysis['rating'] = 'Average' | |
| analysis['description'] = "β οΈ Your GPA is average. Focus on improvement for better college options." | |
| analysis['comparison'] = "This is around the national average." | |
| analysis['improvement_tips'] = [ | |
| "Identify your weakest subjects and focus on them", | |
| "Develop a consistent study schedule", | |
| "Seek help from teachers or tutors", | |
| "Consider retaking courses with low grades if possible" | |
| ] | |
| else: | |
| analysis['rating'] = 'Below Average' | |
| analysis['description'] = "β Your GPA is below average. Please consult with your academic advisor." | |
| analysis['comparison'] = "This is below the national average and may limit college options." | |
| analysis['improvement_tips'] = [ | |
| "Meet with your school counselor immediately", | |
| "Develop a structured improvement plan", | |
| "Consider summer school or credit recovery options", | |
| "Focus on fundamental study skills" | |
| ] | |
| if weighted_gpa > 0 and unweighted_gpa > 0: | |
| diff = weighted_gpa - unweighted_gpa | |
| if diff > 0.5: | |
| analysis['comparison'] += "\n\nThe significant difference between your weighted and unweighted GPA suggests you're taking many advanced courses." | |
| elif diff > 0.2: | |
| analysis['comparison'] += "\n\nThe moderate difference between your weighted and unweighted GPA suggests a good balance of standard and advanced courses." | |
| else: | |
| analysis['comparison'] += "\n\nThe small difference between your weighted and unweighted GPA suggests you might benefit from more challenging courses." | |
| return analysis | |
| except: | |
| return { | |
| 'rating': 'Unknown', | |
| 'description': 'Could not analyze GPA', | |
| 'comparison': '', | |
| 'improvement_tips': [] | |
| } | |
| def analyze_graduation_status(self, parsed_data: Dict) -> Dict: | |
| analysis = { | |
| 'status': '', | |
| 'completion_percentage': 0, | |
| 'missing_requirements': [], | |
| 'on_track': False, | |
| 'timeline': '' | |
| } | |
| try: | |
| total_required = sum( | |
| float(req.get('required', 0)) | |
| for req in parsed_data.get('requirements', {}).values() | |
| if req and str(req.get('required', '0')).replace('.','').isdigit() | |
| ) | |
| total_completed = sum( | |
| float(req.get('completed', 0)) | |
| for req in parsed_data.get('requirements', {}).values() | |
| if req and str(req.get('completed', '0')).replace('.','').isdigit() | |
| ) | |
| analysis['completion_percentage'] = (total_completed / total_required) * 100 if total_required > 0 else 0 | |
| analysis['missing_requirements'] = [ | |
| { | |
| 'code': code, | |
| 'description': req.get('description', ''), | |
| 'remaining': max(0, float(req.get('required', 0)) - float(req.get('completed', 0))), | |
| 'status': req.get('status', '') | |
| } | |
| for code, req in parsed_data.get('requirements', {}).items() | |
| if req and float(req.get('completed', 0)) < float(req.get('required', 0)) | |
| ] | |
| current_grade = parsed_data.get('student_info', {}).get('grade', '') | |
| grad_year = parsed_data.get('student_info', {}).get('year_of_graduation', '') | |
| if analysis['completion_percentage'] >= 100: | |
| analysis['status'] = "π Congratulations! You've met all graduation requirements." | |
| analysis['on_track'] = True | |
| elif analysis['completion_percentage'] >= 90: | |
| analysis['status'] = f"β You've completed {analysis['completion_percentage']:.1f}% of requirements. Almost there!" | |
| analysis['on_track'] = True | |
| elif analysis['completion_percentage'] >= 75: | |
| analysis['status'] = f"π You've completed {analysis['completion_percentage']:.1f}% of requirements. Keep working!" | |
| analysis['on_track'] = True | |
| elif analysis['completion_percentage'] >= 50: | |
| analysis['status'] = f"β οΈ You've completed {analysis['completion_percentage']:.1f}% of requirements. Please meet with your counselor." | |
| analysis['on_track'] = False | |
| else: | |
| analysis['status'] = f"β You've only completed {analysis['completion_percentage']:.1f}% of requirements. Immediate action needed." | |
| analysis['on_track'] = False | |
| if current_grade and grad_year: | |
| remaining_credits = total_required - total_completed | |
| years_remaining = int(grad_year) - datetime.datetime.now().year - int(current_grade) | |
| if years_remaining > 0: | |
| credits_per_year = remaining_credits / years_remaining | |
| analysis['timeline'] = ( | |
| f"To graduate on time in {grad_year}, you need to complete approximately " | |
| f"{credits_per_year:.1f} credits per year." | |
| ) | |
| return analysis | |
| except: | |
| return { | |
| 'status': 'Could not analyze graduation status', | |
| 'completion_percentage': 0, | |
| 'missing_requirements': [], | |
| 'on_track': False, | |
| 'timeline': '' | |
| } | |
| def analyze_course_rigor(self, parsed_data: Dict) -> Dict: | |
| analysis = { | |
| 'advanced_courses': 0, | |
| 'honors_courses': 0, | |
| 'ap_courses': 0, | |
| 'ib_courses': 0, | |
| 'de_courses': 0, | |
| 'rating': '', | |
| 'recommendations': [] | |
| } | |
| try: | |
| for course in parsed_data.get('course_history', []): | |
| course_name = course.get('description', '').upper() | |
| if 'AP' in course_name: | |
| analysis['ap_courses'] += 1 | |
| analysis['advanced_courses'] += 1 | |
| elif 'IB' in course_name: | |
| analysis['ib_courses'] += 1 | |
| analysis['advanced_courses'] += 1 | |
| elif 'DE' in course_name or 'DUAL ENROLLMENT' in course_name: | |
| analysis['de_courses'] += 1 | |
| analysis['advanced_courses'] += 1 | |
| elif 'HONORS' in course_name: | |
| analysis['honors_courses'] += 1 | |
| analysis['advanced_courses'] += 1 | |
| total_advanced = analysis['advanced_courses'] | |
| total_courses = len(parsed_data.get('course_history', [])) | |
| if total_courses == 0: | |
| return analysis | |
| advanced_percentage = (total_advanced / total_courses) * 100 | |
| if advanced_percentage >= 50: | |
| analysis['rating'] = 'Very High Rigor' | |
| analysis['recommendations'] = [ | |
| "Your course rigor is excellent for college admissions", | |
| "Consider adding 1-2 more advanced courses if manageable" | |
| ] | |
| elif advanced_percentage >= 30: | |
| analysis['rating'] = 'High Rigor' | |
| analysis['recommendations'] = [ | |
| "Your course rigor is strong", | |
| "Consider adding 1-2 more advanced courses next year" | |
| ] | |
| elif advanced_percentage >= 15: | |
| analysis['rating'] = 'Moderate Rigor' | |
| analysis['recommendations'] = [ | |
| "Your course rigor is average", | |
| "Consider adding more advanced courses to strengthen your profile" | |
| ] | |
| else: | |
| analysis['rating'] = 'Low Rigor' | |
| analysis['recommendations'] = [ | |
| "Your course rigor is below average for college-bound students", | |
| "Strongly consider adding advanced courses next semester", | |
| "Meet with your counselor to discuss options" | |
| ] | |
| return analysis | |
| except: | |
| return { | |
| 'advanced_courses': 0, | |
| 'honors_courses': 0, | |
| 'ap_courses': 0, | |
| 'ib_courses': 0, | |
| 'de_courses': 0, | |
| 'rating': 'Unknown', | |
| 'recommendations': [] | |
| } | |
| def generate_college_recommendations(self, parsed_data: Dict) -> Dict: | |
| recommendations = { | |
| 'reach': [], | |
| 'target': [], | |
| 'safety': [], | |
| 'scholarships': [], | |
| 'improvement_areas': [] | |
| } | |
| try: | |
| weighted_gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0)) | |
| rigor_analysis = self.analyze_course_rigor(parsed_data) | |
| service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0)) | |
| if weighted_gpa >= 4.3 and rigor_analysis['advanced_courses'] >= 8 and service_hours >= 100: | |
| recommendations['reach'].extend([ | |
| "Ivy League: Harvard, Yale, Princeton, Columbia, etc.", | |
| "Stanford, MIT, CalTech, University of Chicago" | |
| ]) | |
| recommendations['target'].extend([ | |
| "Top Public Universities: UCLA, UC Berkeley, UMich, UVA", | |
| "Elite Liberal Arts: Williams, Amherst, Swarthmore" | |
| ]) | |
| elif weighted_gpa >= 4.0 and rigor_analysis['advanced_courses'] >= 6 and service_hours >= 80: | |
| recommendations['reach'].extend([ | |
| "Top 20 National Universities", | |
| "Highly Selective Liberal Arts Colleges" | |
| ]) | |
| recommendations['target'].extend([ | |
| "Top 50 National Universities", | |
| "Selective Public Flagships", | |
| "Top Liberal Arts Colleges" | |
| ]) | |
| elif weighted_gpa >= 3.7 and rigor_analysis['advanced_courses'] >= 4 and service_hours >= 60: | |
| recommendations['reach'].extend([ | |
| "Top 50 National Universities", | |
| "Selective Liberal Arts Colleges" | |
| ]) | |
| recommendations['target'].extend([ | |
| "State Flagship Universities", | |
| "Good Regional Universities" | |
| ]) | |
| elif weighted_gpa >= 3.3 and rigor_analysis['advanced_courses'] >= 2 and service_hours >= 40: | |
| recommendations['target'].extend([ | |
| "State Universities", | |
| "Many Private Colleges" | |
| ]) | |
| recommendations['safety'].extend([ | |
| "Less Selective Private Colleges", | |
| "Community Colleges with Transfer Programs" | |
| ]) | |
| else: | |
| recommendations['target'].extend([ | |
| "Open Admission Colleges", | |
| "Some State Universities" | |
| ]) | |
| recommendations['safety'].extend([ | |
| "Community Colleges", | |
| "Technical Schools" | |
| ]) | |
| if weighted_gpa >= 4.0: | |
| recommendations['scholarships'].extend([ | |
| "National Merit Scholarship", | |
| "Presidential Scholarships", | |
| "College-Specific Full-Ride Scholarships" | |
| ]) | |
| elif weighted_gpa >= 3.7: | |
| recommendations['scholarships'].extend([ | |
| "Bright Futures (Florida)", | |
| "State-Specific Merit Scholarships", | |
| "Honors College Scholarships" | |
| ]) | |
| elif weighted_gpa >= 3.3: | |
| recommendations['scholarships'].extend([ | |
| "Local Community Scholarships", | |
| "Special Interest Scholarships", | |
| "First-Generation Student Programs" | |
| ]) | |
| if weighted_gpa < 3.5: | |
| recommendations['improvement_areas'].append("Improve GPA through focused study and tutoring") | |
| if rigor_analysis['advanced_courses'] < 4: | |
| recommendations['improvement_areas'].append("Take more advanced courses (AP/IB/DE/Honors)") | |
| if service_hours < 50: | |
| recommendations['improvement_areas'].append("Increase community service involvement") | |
| return recommendations | |
| except: | |
| return { | |
| 'reach': ["Could not generate recommendations"], | |
| 'target': [], | |
| 'safety': [], | |
| 'scholarships': [], | |
| 'improvement_areas': [] | |
| } | |
| def generate_study_plan(self, parsed_data: Dict, learning_style: str) -> Dict: | |
| plan = { | |
| 'weekly_schedule': {}, | |
| 'study_strategies': [], | |
| 'time_management_tips': [], | |
| 'resource_recommendations': [] | |
| } | |
| try: | |
| current_courses = [ | |
| course for course in parsed_data.get('course_history', []) | |
| if course.get('status', '').lower() == 'in progress' | |
| ] | |
| days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] | |
| for day in days: | |
| plan['weekly_schedule'][day] = [] | |
| study_blocks = 2 | |
| if learning_style.lower() == 'visual': | |
| study_blocks = 3 | |
| plan['study_strategies'].extend([ | |
| "Create colorful mind maps for each subject", | |
| "Use flashcards with images and diagrams", | |
| "Watch educational videos on topics" | |
| ]) | |
| elif learning_style.lower() == 'auditory': | |
| study_blocks = 2 | |
| plan['study_strategies'].extend([ | |
| "Record yourself explaining concepts and listen back", | |
| "Participate in study groups", | |
| "Listen to educational podcasts" | |
| ]) | |
| elif learning_style.lower() == 'reading/writing': | |
| study_blocks = 4 | |
| plan['study_strategies'].extend([ | |
| "Write detailed summaries in your own words", | |
| "Create question-answer sets for each topic", | |
| "Rewrite your notes to reinforce learning" | |
| ]) | |
| elif learning_style.lower() == 'kinesthetic': | |
| study_blocks = 3 | |
| plan['study_strategies'].extend([ | |
| "Create physical models or demonstrations", | |
| "Study while walking or moving", | |
| "Use hands-on activities when possible" | |
| ]) | |
| for i, course in enumerate(current_courses): | |
| day_index = i % 5 | |
| day = days[day_index] | |
| plan['weekly_schedule'][day].append({ | |
| 'course': course.get('description', 'Course'), | |
| 'duration': '45-60 minutes', | |
| 'activities': [ | |
| "Review notes", | |
| "Complete practice problems", | |
| "Prepare questions for teacher" | |
| ] | |
| }) | |
| plan['time_management_tips'].extend([ | |
| "Use the Pomodoro technique (25 min study, 5 min break)", | |
| "Prioritize assignments by due date and importance", | |
| "Schedule regular review sessions" | |
| ]) | |
| plan['resource_recommendations'].extend([ | |
| "Khan Academy for math and science", | |
| "Quizlet for flashcards", | |
| "Wolfram Alpha for math help" | |
| ]) | |
| return plan | |
| except: | |
| return { | |
| 'weekly_schedule': {'Error': ["Could not generate schedule"]}, | |
| 'study_strategies': [], | |
| 'time_management_tips': [], | |
| 'resource_recommendations': [] | |
| } | |
| # Initialize academic analyzer | |
| academic_analyzer = AcademicAnalyzer() | |
| # ========== DATA VISUALIZER ========== | |
| class DataVisualizer: | |
| def __init__(self): | |
| self.color_palette = { | |
| 'complete': '#4CAF50', | |
| 'incomplete': '#F44336', | |
| 'in_progress': '#FFC107', | |
| 'gpa_weighted': '#3F51B5', | |
| 'gpa_unweighted': '#9C27B0', | |
| 'core': '#3498DB', | |
| 'electives': '#2ECC71', | |
| 'arts_pe': '#9B59B6' | |
| } | |
| def create_gpa_visualization(self, parsed_data: Dict): | |
| try: | |
| gpa_data = { | |
| "Type": ["Weighted GPA", "Unweighted GPA"], | |
| "Value": [ | |
| float(parsed_data.get('student_info', {}).get('weighted_gpa', 0)), | |
| float(parsed_data.get('student_info', {}).get('unweighted_gpa', 0)) | |
| ], | |
| "Color": [self.color_palette['gpa_weighted'], self.color_palette['gpa_unweighted']] | |
| } | |
| df = pd.DataFrame(gpa_data) | |
| fig = px.bar( | |
| df, | |
| x="Type", | |
| y="Value", | |
| title="GPA Comparison", | |
| color="Type", | |
| color_discrete_map={ | |
| "Weighted GPA": self.color_palette['gpa_weighted'], | |
| "Unweighted GPA": self.color_palette['gpa_unweighted'] | |
| }, | |
| text="Value", | |
| hover_data={"Type": True, "Value": ":.2f"} | |
| ) | |
| fig.add_hline(y=4.0, line_dash="dot", line_color="green", annotation_text="Excellent", annotation_position="top left") | |
| fig.add_hline(y=3.0, line_dash="dot", line_color="orange", annotation_text="Good", annotation_position="top left") | |
| fig.add_hline(y=2.0, line_dash="dot", line_color="red", annotation_text="Minimum", annotation_position="top left") | |
| fig.update_traces( | |
| texttemplate='%{text:.2f}', | |
| textposition='outside', | |
| marker_line_color='rgb(8,48,107)', | |
| marker_line_width=1.5 | |
| ) | |
| fig.update_layout( | |
| yaxis_range=[0, 5], | |
| uniformtext_minsize=8, | |
| uniformtext_mode='hide', | |
| plot_bgcolor='rgba(0,0,0,0)', | |
| paper_bgcolor='rgba(0,0,0,0)', | |
| font=dict(size=12) | |
| ) | |
| return fig | |
| except Exception as e: | |
| logger.error(f"Error creating GPA visualization: {str(e)}") | |
| return None | |
| def create_requirements_visualization(self, parsed_data: Dict): | |
| try: | |
| req_data = [] | |
| for code, req in parsed_data.get('requirements', {}).items(): | |
| if req and req.get('percent_complete'): | |
| completion = float(req['percent_complete']) | |
| req_data.append({ | |
| "Requirement": f"{code}: {req.get('description', '')[:30]}...", | |
| "Completion (%)": completion, | |
| "Status": "Complete" if completion >= 100 else "In Progress" if completion > 0 else "Not Started", | |
| "Required": req.get('required', 0), | |
| "Completed": req.get('completed', 0), | |
| "Remaining": max(0, float(req.get('required', 0)) - float(req.get('completed', 0))) | |
| }) | |
| if not req_data: | |
| return None | |
| df = pd.DataFrame(req_data) | |
| fig = px.bar( | |
| df, | |
| x="Requirement", | |
| y="Completion (%)", | |
| title="Graduation Requirements Completion", | |
| color="Status", | |
| color_discrete_map={ | |
| "Complete": self.color_palette['complete'], | |
| "In Progress": self.color_palette['in_progress'], | |
| "Not Started": self.color_palette['incomplete'] | |
| }, | |
| hover_data=["Required", "Completed", "Remaining"], | |
| text="Completion (%)" | |
| ) | |
| fig.update_traces( | |
| texttemplate='%{text:.1f}%', | |
| textposition='outside', | |
| marker_line_color='rgb(8,48,107)', | |
| marker_line_width=1.5 | |
| ) | |
| fig.update_layout( | |
| xaxis={'categoryorder':'total descending'}, | |
| yaxis_range=[0, 100], | |
| plot_bgcolor='rgba(0,0,0,0)', | |
| paper_bgcolor='rgba(0,0,0,0)', | |
| font=dict(size=12), | |
| hovermode="x unified" | |
| ) | |
| fig.add_hline(y=100, line_dash="dot", line_color="green") | |
| return fig | |
| except Exception as e: | |
| logger.error(f"Error creating requirements visualization: {str(e)}") | |
| return None | |
| def create_credits_distribution_visualization(self, parsed_data: Dict): | |
| try: | |
| core_credits = sum( | |
| req['completed'] for req in parsed_data.get('requirements', {}).values() | |
| if req and req.get('code', '').split('-')[0] in ['A', 'B', 'C', 'D'] | |
| ) | |
| elective_credits = sum( | |
| req['completed'] for req in parsed_data.get('requirements', {}).values() | |
| if req and req.get('code', '').split('-')[0] in ['G', 'H'] | |
| ) | |
| other_credits = sum( | |
| req['completed'] for req in parsed_data.get('requirements', {}).values() | |
| if req and req.get('code', '').split('-')[0] in ['E', 'F'] | |
| ) | |
| credit_values = [core_credits, elective_credits, other_credits] | |
| credit_labels = ['Core Subjects', 'Electives', 'Arts/PE'] | |
| if sum(credit_values) == 0: | |
| return None | |
| df = pd.DataFrame({ | |
| "Category": credit_labels, | |
| "Credits": credit_values, | |
| "Color": [self.color_palette['core'], self.color_palette['electives'], self.color_palette['arts_pe']] | |
| }) | |
| fig = px.pie( | |
| df, | |
| values="Credits", | |
| names="Category", | |
| title="Credit Distribution", | |
| color="Category", | |
| color_discrete_map={ | |
| "Core Subjects": self.color_palette['core'], | |
| "Electives": self.color_palette['electives'], | |
| "Arts/PE": self.color_palette['arts_pe'] | |
| }, | |
| hole=0.3 | |
| ) | |
| fig.update_traces( | |
| textposition='inside', | |
| textinfo='percent+label', | |
| marker=dict(line=dict(color='#FFFFFF', width=2)) | |
| ) | |
| fig.update_layout( | |
| plot_bgcolor='rgba(0,0,0,0)', | |
| paper_bgcolor='rgba(0,0,0,0)', | |
| font=dict(size=12), | |
| showlegend=False | |
| ) | |
| return fig | |
| except Exception as e: | |
| logger.error(f"Error creating credits visualization: {str(e)}") | |
| return None | |
| def create_course_rigor_visualization(self, parsed_data: Dict): | |
| try: | |
| rigor = academic_analyzer.analyze_course_rigor(parsed_data) | |
| data = { | |
| "Type": ["AP", "IB", "DE", "Honors"], | |
| "Count": [rigor['ap_courses'], rigor['ib_courses'], rigor['de_courses'], rigor['honors_courses']], | |
| "Color": ["#E91E63", "#673AB7", "#009688", "#FF9800"] | |
| } | |
| df = pd.DataFrame(data) | |
| fig = px.bar( | |
| df, | |
| x="Type", | |
| y="Count", | |
| title="Advanced Course Breakdown", | |
| color="Type", | |
| color_discrete_map={ | |
| "AP": "#E91E63", | |
| "IB": "#673AB7", | |
| "DE": "#009688", | |
| "Honors": "#FF9800" | |
| }, | |
| text="Count" | |
| ) | |
| fig.update_traces( | |
| textposition='outside', | |
| marker_line_color='rgb(8,48,107)', | |
| marker_line_width=1.5 | |
| ) | |
| fig.update_layout( | |
| plot_bgcolor='rgba(0,0,0,0)', | |
| paper_bgcolor='rgba(0,0,0,0)', | |
| font=dict(size=12), | |
| xaxis_title="Course Type", | |
| yaxis_title="Number of Courses" | |
| ) | |
| return fig | |
| except Exception as e: | |
| logger.error(f"Error creating course rigor visualization: {str(e)}") | |
| return None | |
| # Initialize visualizer | |
| data_visualizer = DataVisualizer() | |
| # ========== PROFILE MANAGER ========== | |
| class EnhancedProfileManager: | |
| def __init__(self): | |
| self.profiles_dir = Path(PROFILES_DIR) | |
| self.profiles_dir.mkdir(exist_ok=True, parents=True) | |
| self.current_session = None | |
| self.encryptor = DataEncryptor(ENCRYPTION_KEY) | |
| def set_session(self, session_token: str) -> None: | |
| self.current_session = session_token | |
| def get_profile_path(self, name: str) -> Path: | |
| name_hash = hashlib.sha256(name.encode()).hexdigest()[:16] | |
| if self.current_session: | |
| return self.profiles_dir / f"{name_hash}_{self.current_session}_profile.json" | |
| return self.profiles_dir / f"{name_hash}_profile.json" | |
| def save_profile(self, name: str, age: Union[int, str], interests: str, | |
| transcript: Dict, learning_style: str, | |
| movie: str, movie_reason: str, show: str, show_reason: str, | |
| book: str, book_reason: str, character: str, character_reason: str, | |
| blog: str, study_plan: Dict = None) -> str: | |
| try: | |
| name = validate_name(name) | |
| age = validate_age(age) | |
| if not interests.strip(): | |
| raise ValueError("Please describe at least one interest or hobby.") | |
| if not transcript: | |
| raise ValueError("Please complete the transcript analysis first.") | |
| if not learning_style or "Your primary learning style is" not in learning_style: | |
| raise ValueError("Please complete the learning style quiz first.") | |
| favorites = { | |
| "movie": sanitize_input(movie), | |
| "movie_reason": sanitize_input(movie_reason), | |
| "show": sanitize_input(show), | |
| "show_reason": sanitize_input(show_reason), | |
| "book": sanitize_input(book), | |
| "book_reason": sanitize_input(book_reason), | |
| "character": sanitize_input(character), | |
| "character_reason": sanitize_input(character_reason) | |
| } | |
| if not study_plan: | |
| learning_style_match = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*", learning_style) | |
| if learning_style_match: | |
| study_plan = academic_analyzer.generate_study_plan( | |
| transcript, | |
| learning_style_match.group(1)) | |
| data = { | |
| "name": self.encryptor.encrypt(name), | |
| "age": age, | |
| "interests": self.encryptor.encrypt(sanitize_input(interests)), | |
| "transcript": transcript, | |
| "learning_style": learning_style, | |
| "favorites": favorites, | |
| "blog": self.encryptor.encrypt(sanitize_input(blog)) if blog else "", | |
| "study_plan": study_plan if study_plan else {}, | |
| "session_token": self.current_session, | |
| "last_updated": time.time(), | |
| "version": "2.0" | |
| } | |
| filepath = self.get_profile_path(name) | |
| temp_path = filepath.with_suffix('.tmp') | |
| with open(temp_path, "w", encoding='utf-8') as f: | |
| json.dump(data, f, indent=2, ensure_ascii=False) | |
| temp_path.replace(filepath) | |
| if HF_TOKEN and hf_api: | |
| try: | |
| hf_api.upload_file( | |
| path_or_fileobj=filepath, | |
| path_in_repo=f"profiles/{filepath.name}", | |
| repo_id="your-username/student-learning-assistant", | |
| repo_type="dataset", | |
| commit_message=f"Profile update for {name}" | |
| ) | |
| except Exception as e: | |
| logger.error(f"Failed to upload to HF Hub: {str(e)}") | |
| return f"Profile saved successfully for {name}." | |
| except Exception as e: | |
| logger.error(f"Profile save error: {str(e)}") | |
| raise gr.Error(f"Couldn't save profile: {str(e)}") | |
| def load_profile(self, name: str = None, session_token: str = None) -> Dict: | |
| for attempt in range(MAX_PROFILE_LOAD_ATTEMPTS): | |
| try: | |
| if session_token: | |
| profile_pattern = f"*{session_token}_profile.json" | |
| else: | |
| profile_pattern = "*.json" | |
| profiles = list(self.profiles_dir.glob(profile_pattern)) | |
| if not profiles: | |
| return {} | |
| if name: | |
| profile_file = self.get_profile_path(name) | |
| if not profile_file.exists(): | |
| if HF_TOKEN and hf_api: | |
| try: | |
| hf_api.download_file( | |
| path_in_repo=f"profiles/{profile_file.name}", | |
| repo_id="your-username/student-learning-assistant", | |
| repo_type="dataset", | |
| local_dir=self.profiles_dir | |
| ) | |
| except Exception as e: | |
| logger.warning(f"Failed to download profile: {str(e)}") | |
| raise gr.Error(f"No profile found for {name}") | |
| else: | |
| raise gr.Error(f"No profile found for {name}") | |
| else: | |
| profiles.sort(key=lambda x: x.stat().st_mtime, reverse=True) | |
| profile_file = profiles[0] | |
| with open(profile_file, "r", encoding='utf-8') as f: | |
| profile_data = json.load(f) | |
| if time.time() - profile_data.get('last_updated', 0) > SESSION_TIMEOUT: | |
| raise gr.Error("Session expired. Please start a new session.") | |
| if profile_data.get('version', '1.0') == '2.0': | |
| try: | |
| profile_data['name'] = self.encryptor.decrypt(profile_data['name']) | |
| profile_data['interests'] = self.encryptor.decrypt(profile_data.get('interests', '')) | |
| if profile_data.get('blog'): | |
| profile_data['blog'] = self.encryptor.decrypt(profile_data['blog']) | |
| except Exception as e: | |
| logger.error(f"Decryption error: {str(e)}") | |
| raise gr.Error("Failed to decrypt profile data") | |
| return profile_data | |
| except json.JSONDecodeError as e: | |
| if attempt == MAX_PROFILE_LOAD_ATTEMPTS - 1: | |
| logger.error(f"Failed to load profile after {MAX_PROFILE_LOAD_ATTEMPTS} attempts") | |
| raise gr.Error("Corrupted profile data") | |
| time.sleep(0.5 * (attempt + 1)) | |
| except Exception as e: | |
| if attempt == MAX_PROFILE_LOAD_ATTEMPTS - 1: | |
| raise | |
| time.sleep(0.5 * (attempt + 1)) | |
| def list_profiles(self, session_token: str = None) -> List[str]: | |
| if session_token: | |
| profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json")) | |
| else: | |
| profiles = list(self.profiles_dir.glob("*.json")) | |
| profile_names = [] | |
| for p in profiles: | |
| try: | |
| with open(p, "r", encoding='utf-8') as f: | |
| data = json.load(f) | |
| if data.get('version', '1.0') == '2.0': | |
| try: | |
| name = self.encryptor.decrypt(data['name']) | |
| profile_names.append(name) | |
| except: | |
| profile_names.append(p.stem) | |
| else: | |
| profile_names.append(data.get('name', p.stem)) | |
| except: | |
| continue | |
| return profile_names | |
| def delete_profile(self, name: str, session_token: str = None) -> bool: | |
| try: | |
| profile_file = self.get_profile_path(name) | |
| if not profile_file.exists(): | |
| return False | |
| with open(profile_file, "r", encoding='utf-8') as f: | |
| data = json.load(f) | |
| if session_token and data.get('session_token') != session_token: | |
| return False | |
| profile_file.unlink() | |
| if HF_TOKEN and hf_api: | |
| try: | |
| hf_api.delete_file( | |
| path_in_repo=f"profiles/{profile_file.name}", | |
| repo_id="your-username/student-learning-assistant", | |
| repo_type="dataset" | |
| ) | |
| except Exception as e: | |
| logger.error(f"Failed to delete from HF Hub: {str(e)}") | |
| return True | |
| except Exception as e: | |
| logger.error(f"Error deleting profile: {str(e)}") | |
| return False | |
| # Initialize profile manager | |
| profile_manager = EnhancedProfileManager() | |
| # ========== TEACHING ASSISTANT ========== | |
| class EnhancedTeachingAssistant: | |
| def __init__(self): | |
| self.context_history = [] | |
| self.max_context_length = MAX_CONTEXT_HISTORY | |
| self.model, self.tokenizer = None, None | |
| self.last_model_load_attempt = 0 | |
| async def initialize_model(self): | |
| if not self.model or not self.tokenizer: | |
| if time.time() - self.last_model_load_attempt > 3600: | |
| self.model, self.tokenizer = get_model_and_tokenizer() | |
| self.last_model_load_attempt = time.time() | |
| async def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str: | |
| try: | |
| await self.initialize_model() | |
| profile = profile_manager.load_profile(session_token=session_token) | |
| if not profile: | |
| return "Please complete and save your profile first to get personalized advice." | |
| self._update_context(message, history) | |
| student_name = profile.get('name', 'Student') | |
| gpa = profile.get('transcript', {}).get('student_info', {}).get('weighted_gpa', None) | |
| learning_style = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*", | |
| profile.get('learning_style', '')) | |
| learning_style = learning_style.group(1) if learning_style else None | |
| context = f"You are an AI teaching assistant helping {student_name}. " | |
| if gpa: | |
| context += f"{student_name}'s current weighted GPA is {gpa}. " | |
| if learning_style: | |
| context += f"They are a {learning_style.lower()} learner. " | |
| if self.context_history: | |
| context += "Recent conversation:\n" | |
| for item in self.context_history[-self.max_context_length:]: | |
| role = "Student" if item['role'] == 'user' else "Assistant" | |
| context += f"{role}: {item['content']}\n" | |
| query_type = self._classify_query(message) | |
| response = await self._generate_typed_response(query_type, message, context, profile) | |
| return response | |
| except Exception as e: | |
| logger.error(f"Error generating response: {str(e)}") | |
| return "I encountered an error processing your request. Please try again." | |
| def _classify_query(self, message: str) -> str: | |
| message_lower = message.lower() | |
| if any(word in message_lower for word in ['gpa', 'grade', 'average']): | |
| return 'gpa' | |
| elif any(word in message_lower for word in ['study', 'learn', 'exam', 'test']): | |
| return 'study' | |
| elif any(word in message_lower for word in ['course', 'class', 'subject']): | |
| return 'courses' | |
| elif any(word in message_lower for word in ['college', 'university', 'apply']): | |
| return 'college' | |
| elif any(word in message_lower for word in ['plan', 'schedule', 'calendar']): | |
| return 'planning' | |
| elif any(word in message_lower for word in ['resource', 'book', 'website']): | |
| return 'resources' | |
| else: | |
| return 'general' | |
| async def _generate_typed_response(self, query_type: str, message: str, context: str, profile: Dict) -> str: | |
| if query_type == 'gpa': | |
| return self._generate_gpa_response(profile) | |
| elif query_type == 'study': | |
| return self._generate_study_response(profile) | |
| elif query_type == 'courses': | |
| return self._generate_courses_response(profile) | |
| elif query_type == 'college': | |
| return self._generate_college_response(profile) | |
| elif query_type == 'planning': | |
| return self._generate_planning_response(profile) | |
| elif query_type == 'resources': | |
| return self._generate_resources_response(profile) | |
| else: | |
| return await self._generate_general_response(message, context) | |
| def _generate_gpa_response(self, profile: Dict) -> str: | |
| gpa = profile.get('transcript', {}).get('student_info', {}).get('weighted_gpa', None) | |
| if not gpa: | |
| return "I couldn't find your GPA information. Please upload your transcript first." | |
| analysis = academic_analyzer.analyze_gpa(profile['transcript']) | |
| response = [ | |
| f"## π GPA Analysis", | |
| f"**Rating:** {analysis['rating']}", | |
| f"{analysis['description']}", | |
| f"{analysis['comparison']}", | |
| "", | |
| f"## π Graduation Status", | |
| analysis['status'], | |
| f"**Completion:** {analysis['completion_percentage']:.1f}%", | |
| "", | |
| f"## π« College Recommendations" | |
| ] | |
| if analysis.get('improvement_tips'): | |
| response.append("\n**Improvement Tips:**") | |
| response.extend([f"- {tip}" for tip in analysis['improvement_tips']]) | |
| return "\n\n".join(response) | |
| def _generate_study_response(self, profile: Dict) -> str: | |
| learning_style_match = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*", | |
| profile.get('learning_style', '')) | |
| if not learning_style_match: | |
| return "Please complete the learning style quiz first to get personalized study advice." | |
| learning_style = learning_style_match.group(1) | |
| study_plan = profile.get('study_plan', {}) | |
| response = [ | |
| f"As a **{learning_style}** learner, here are some study strategies for you:" | |
| ] | |
| if study_plan.get('study_strategies'): | |
| response.extend([f"- {strategy}" for strategy in study_plan['study_strategies']]) | |
| else: | |
| if learning_style.lower() == 'visual': | |
| response.extend([ | |
| "- Use color coding in your notes", | |
| "- Create mind maps and diagrams", | |
| "- Watch educational videos to visualize concepts" | |
| ]) | |
| elif learning_style.lower() == 'auditory': | |
| response.extend([ | |
| "- Record lectures and listen to them", | |
| "- Explain concepts out loud to yourself", | |
| "- Participate in study groups" | |
| ]) | |
| elif learning_style.lower() == 'reading/writing': | |
| response.extend([ | |
| "- Write detailed summaries in your own words", | |
| "- Create question-answer sets for each topic", | |
| "- Rewrite your notes to reinforce learning" | |
| ]) | |
| elif learning_style.lower() == 'kinesthetic': | |
| response.extend([ | |
| "- Use hands-on activities when possible", | |
| "- Study while moving or pacing", | |
| "- Create physical models to represent concepts" | |
| ]) | |
| if study_plan.get('time_management_tips'): | |
| response.append("\n**Time Management Tips:**") | |
| response.extend([f"- {tip}" for tip in study_plan['time_management_tips']]) | |
| return "\n\n".join(response) | |
| def _generate_courses_response(self, profile: Dict) -> str: | |
| transcript = profile.get('transcript', {}) | |
| if not transcript.get('course_history'): | |
| return "I couldn't find your course information. Please upload your transcript first." | |
| current_courses = [ | |
| course for course in transcript['course_history'] | |
| if course.get('status', '').lower() == 'in progress' | |
| ] | |
| completed_courses = [ | |
| course for course in transcript['course_history'] | |
| if course.get('status', '').lower() == 'completed' | |
| ] | |
| response = [] | |
| if current_courses: | |
| response.append("**Your Current Courses:**") | |
| for course in current_courses[:5]: | |
| response.append( | |
| f"- {course.get('description', 'Unknown')} " | |
| f"({course.get('course_code', '')})" | |
| ) | |
| else: | |
| response.append("I couldn't find any current courses in your transcript.") | |
| if completed_courses: | |
| response.append("\n**Recently Completed Courses:**") | |
| for course in completed_courses[:5]: | |
| grade = course.get('grade_earned', '') | |
| if grade: | |
| response.append( | |
| f"- {course.get('description', 'Unknown')} " | |
| f"(Grade: {grade})" | |
| ) | |
| else: | |
| response.append(f"- {course.get('description', 'Unknown')}") | |
| rigor = academic_analyzer.analyze_course_rigor(transcript) | |
| if rigor['rating']: | |
| response.append(f"\n**Course Rigor Analysis:** {rigor['rating']}") | |
| if rigor['recommendations']: | |
| response.append("\n**Recommendations:**") | |
| response.extend([f"- {rec}" for rec in rigor['recommendations']]) | |
| return "\n".join(response) | |
| def _generate_college_response(self, profile: Dict) -> str: | |
| recommendations = academic_analyzer.generate_college_recommendations(profile.get('transcript', {})) | |
| response = ["**College Recommendations Based on Your Profile:**"] | |
| if recommendations['reach']: | |
| response.append("\n**Reach Schools (Competitive):**") | |
| response.extend([f"- {school}" for school in recommendations['reach'][:3]]) | |
| if recommendations['target']: | |
| response.append("\n**Target Schools (Good Match):**") | |
| response.extend([f"- {school}" for school in recommendations['target'][:3]]) | |
| if recommendations['safety']: | |
| response.append("\n**Safety Schools (Likely Admission):**") | |
| response.extend([f"- {school}" for school in recommendations['safety'][:3]]) | |
| if recommendations['scholarships']: | |
| response.append("\n**Scholarship Opportunities:**") | |
| response.extend([f"- {scholarship}" for scholarship in recommendations['scholarships'][:3]]) | |
| if recommendations['improvement_areas']: | |
| response.append("\n**Areas to Improve for College Admissions:**") | |
| response.extend([f"- {area}" for area in recommendations['improvement_areas']]) | |
| return "\n".join(response) | |
| def _generate_planning_response(self, profile: Dict) -> str: | |
| study_plan = profile.get('study_plan', {}) | |
| response = ["**Study Planning Advice:**"] | |
| if study_plan.get('weekly_schedule'): | |
| response.append("\nHere's a suggested weekly study schedule:") | |
| for day, activities in study_plan['weekly_schedule'].items(): | |
| if activities: | |
| response.append(f"\n**{day}:**") | |
| for activity in activities[:2]: | |
| response.append( | |
| f"- {activity.get('course', 'Course')}: " | |
| f"{activity.get('duration', '45-60 minutes')}" | |
| ) | |
| else: | |
| response.append("\nA good study schedule should include:") | |
| response.append("- 45-60 minute study blocks with short breaks") | |
| response.append("- Focus on 1-2 subjects per day") | |
| response.append("- Regular review sessions") | |
| if study_plan.get('time_management_tips'): | |
| response.append("\n**Time Management Tips:**") | |
| response.extend([f"- {tip}" for tip in study_plan['time_management_tips'][:3]]) | |
| return "\n".join(response) | |
| def _generate_resources_response(self, profile: Dict) -> str: | |
| study_plan = profile.get('study_plan', {}) | |
| transcript = profile.get('transcript', {}) | |
| response = ["**Recommended Learning Resources:**"] | |
| if study_plan.get('resource_recommendations'): | |
| response.extend([f"- {resource}" for resource in study_plan['resource_recommendations'][:3]]) | |
| else: | |
| response.extend([ | |
| "- Khan Academy for math and science", | |
| "- Quizlet for flashcards", | |
| "- Wolfram Alpha for math help" | |
| ]) | |
| current_courses = [ | |
| course for course in transcript.get('course_history', []) | |
| if course.get('status', '').lower() == 'in progress' | |
| ] | |
| if current_courses: | |
| response.append("\n**Course-Specific Resources:**") | |
| for course in current_courses[:2]: | |
| course_name = course.get('description', 'your course') | |
| if 'MATH' in course_name.upper(): | |
| response.append(f"- For {course_name}: Desmos Graphing Calculator, Art of Problem Solving") | |
| elif 'SCIENCE' in course_name.upper(): | |
| response.append(f"- For {course_name}: PhET Simulations, Crash Course Science videos") | |
| elif 'HISTORY' in course_name.upper(): | |
| response.append(f"- For {course_name}: Crash Course History videos, Library of Congress resources") | |
| return "\n".join(response) | |
| async def _generate_general_response(self, message: str, context: str) -> str: | |
| if not self.model or not self.tokenizer: | |
| return "I'm still loading my knowledge base. Please try again in a moment." | |
| try: | |
| prompt = f"{context}\nStudent: {message}\nAssistant:" | |
| inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) | |
| outputs = self.model.generate( | |
| **inputs, | |
| max_new_tokens=200, | |
| temperature=0.7, | |
| top_p=0.9, | |
| repetition_penalty=1.1, | |
| do_sample=True | |
| ) | |
| response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| response = response[len(prompt):].strip() | |
| if response and response[-1] not in {'.', '!', '?'}: | |
| last_period = response.rfind('.') | |
| if last_period > 0: | |
| response = response[:last_period + 1] | |
| return response if response else "I'm not sure how to respond to that. Could you rephrase your question?" | |
| except Exception as e: | |
| logger.error(f"Model generation error: {str(e)}") | |
| return "I encountered an error generating a response. Please try again." | |
| def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None: | |
| self.context_history.append({"role": "user", "content": message}) | |
| if history: | |
| for h in history[-self.max_context_length:]: | |
| if h[0]: | |
| self.context_history.append({"role": "user", "content": h[0]}) | |
| if h[1]: | |
| self.context_history.append({"role": "assistant", "content": h[1]}) | |
| self.context_history = self.context_history[-(self.max_context_length * 2):] | |
| # Initialize teaching assistant | |
| teaching_assistant = EnhancedTeachingAssistant() | |
| # ========== UTILITY FUNCTIONS ========== | |
| class DataEncryptor: | |
| def __init__(self, key: str): | |
| self.cipher = Fernet(key.encode()) | |
| def encrypt(self, data: str) -> str: | |
| return self.cipher.encrypt(data.encode()).decode() | |
| def decrypt(self, encrypted_data: str) -> str: | |
| return self.cipher.decrypt(encrypted_data.encode()).decode() | |
| encryptor = DataEncryptor(ENCRYPTION_KEY) | |
| def generate_session_token() -> str: | |
| alphabet = string.ascii_letters + string.digits | |
| return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH)) | |
| def sanitize_input(text: str) -> str: | |
| if not text: | |
| return "" | |
| text = html.escape(text.strip()) | |
| text = re.sub(r'<[^>]*>', '', text) | |
| text = re.sub(r'[^\w\s\-.,!?@#\$%^&*()+=]', '', text) | |
| return text | |
| def validate_name(name: str) -> str: | |
| name = name.strip() | |
| if not name: | |
| raise ValueError("Name cannot be empty.") | |
| if len(name) > 100: | |
| raise ValueError("Name is too long (maximum 100 characters).") | |
| if any(c.isdigit() for c in name): | |
| raise ValueError("Name cannot contain numbers.") | |
| return name | |
| def validate_age(age: Union[int, float, str]) -> int: | |
| try: | |
| age_int = int(age) | |
| if not MIN_AGE <= age_int <= MAX_AGE: | |
| raise ValueError(f"Age must be between {MIN_AGE} and {MAX_AGE}.") | |
| return age_int | |
| except (ValueError, TypeError): | |
| raise ValueError("Please enter a valid age number.") | |
| def validate_file(file_obj) -> None: | |
| if not file_obj: | |
| raise ValueError("Please upload a file first") | |
| file_ext = os.path.splitext(file_obj.name)[1].lower() | |
| if file_ext not in ALLOWED_FILE_TYPES: | |
| raise ValueError(f"Invalid file type. Allowed types: {', '.join(ALLOWED_FILE_TYPES)}") | |
| file_size = os.path.getsize(file_obj.name) / (1024 * 1024) | |
| if file_size > MAX_FILE_SIZE_MB: | |
| raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.") | |
| def remove_sensitive_info(text: str) -> str: | |
| patterns = [ | |
| (r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED-SSN]'), | |
| (r'\b\d{6,9}\b', '[ID]'), | |
| (r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]'), | |
| (r'\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b', '[IP]'), | |
| (r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', '[NAME]'), | |
| (r'\b\d{3}\) \d{3}-\d{4}\b', '[PHONE]'), | |
| (r'\b\d{1,5} [A-Z][a-z]+ [A-Z][a-z]+, [A-Z]{2} \d{5}\b', '[ADDRESS]') | |
| ] | |
| for pattern, replacement in patterns: | |
| text = re.sub(pattern, replacement, text) | |
| return text | |
| # ========== GRADIO INTERFACE ========== | |
| def create_enhanced_interface(): | |
| with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app: | |
| session_token = gr.State(value=generate_session_token()) | |
| profile_manager.set_session(session_token.value) | |
| tab_completed = gr.State({ | |
| 0: False, | |
| 1: False, | |
| 2: False, | |
| 3: False, | |
| 4: False, | |
| 5: False | |
| }) | |
| app.css = """ | |
| .gradio-container { | |
| max-width: 1200px !important; | |
| margin: 0 auto !important; | |
| font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
| } | |
| .tab-content { | |
| padding: 20px !important; | |
| border: 1px solid #e0e0e0 !important; | |
| border-radius: 8px !important; | |
| margin-top: 10px !important; | |
| background-color: white; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.05); | |
| } | |
| .completed-tab { | |
| background: #4CAF50 !important; | |
| color: white !important; | |
| font-weight: bold; | |
| } | |
| .incomplete-tab { | |
| background: #E0E0E0 !important; | |
| color: #616161; | |
| } | |
| .nav-message { | |
| padding: 12px; | |
| margin: 10px 0; | |
| border-radius: 6px; | |
| background-color: #ffebee; | |
| color: #c62828; | |
| border-left: 4px solid #c62828; | |
| } | |
| .file-upload { | |
| border: 2px dashed #4CAF50 !important; | |
| padding: 25px !important; | |
| border-radius: 8px !important; | |
| text-align: center; | |
| background-color: #f8f8f8; | |
| } | |
| .file-upload:hover { | |
| background: #f1f8e9; | |
| } | |
| .progress-bar { | |
| height: 6px; | |
| background: linear-gradient(to right, #4CAF50, #8BC34A); | |
| margin-bottom: 15px; | |
| border-radius: 3px; | |
| box-shadow: inset 0 1px 2px rgba(0,0,0,0.1); | |
| } | |
| .quiz-question { | |
| margin-bottom: 15px; | |
| padding: 15px; | |
| background: #f5f5f5; | |
| border-radius: 5px; | |
| border-left: 4px solid #2196F3; | |
| } | |
| .quiz-results { | |
| margin-top: 20px; | |
| padding: 20px; | |
| background: #e8f5e9; | |
| border-radius: 8px; | |
| border-left: 4px solid #4CAF50; | |
| } | |
| .error-message { | |
| color: #d32f2f; | |
| background-color: #ffebee; | |
| padding: 12px; | |
| border-radius: 6px; | |
| margin: 10px 0; | |
| border-left: 4px solid #d32f2f; | |
| } | |
| .transcript-results { | |
| border-left: 4px solid #4CAF50 !important; | |
| padding: 15px !important; | |
| background: #f8f8f8 !important; | |
| border-radius: 4px; | |
| } | |
| .error-box { | |
| border: 1px solid #ff4444 !important; | |
| background: #fff8f8 !important; | |
| border-radius: 4px; | |
| } | |
| .metric-box { | |
| background-color: white; | |
| border-radius: 10px; | |
| padding: 15px; | |
| margin: 10px 0; | |
| box-shadow: 0 2px 5px rgba(0,0,0,0.1); | |
| border-left: 4px solid #2196F3; | |
| } | |
| .recommendation { | |
| background-color: #fff8e1; | |
| padding: 10px; | |
| border-left: 4px solid #ffc107; | |
| margin: 5px 0; | |
| border-radius: 4px; | |
| } | |
| .goal-card { | |
| background-color: white; | |
| border-radius: 8px; | |
| padding: 15px; | |
| margin: 10px 0; | |
| box-shadow: 0 1px 3px rgba(0,0,0,0.1); | |
| border-left: 4px solid #4CAF50; | |
| } | |
| .calendar-event { | |
| background-color: #e3f2fd; | |
| border-radius: 6px; | |
| padding: 10px; | |
| margin: 5px 0; | |
| border-left: 4px solid #2196F3; | |
| } | |
| .dark .tab-content { | |
| background-color: #2d2d2d !important; | |
| border-color: #444 !important; | |
| color: #eee !important; | |
| } | |
| .dark .quiz-question { | |
| background-color: #3d3d3d !important; | |
| color: #eee !important; | |
| } | |
| .dark .quiz-results { | |
| background-color: #2e3d2e !important; | |
| color: #eee !important; | |
| } | |
| .dark textarea, .dark input { | |
| background-color: #333 !important; | |
| color: #eee !important; | |
| border-color: #555 !important; | |
| } | |
| .dark .output-markdown { | |
| color: #eee !important; | |
| } | |
| .dark .chatbot { | |
| background-color: #333 !important; | |
| } | |
| .dark .chatbot .user, .dark .chatbot .assistant { | |
| color: #eee !important; | |
| } | |
| .dark .metric-box { | |
| background-color: #333 !important; | |
| color: #eee !important; | |
| } | |
| .dark .goal-card { | |
| background-color: #333; | |
| color: #eee; | |
| } | |
| .dark .calendar-event { | |
| background-color: #1a3d5c; | |
| color: #eee; | |
| } | |
| """ | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| gr.Markdown(""" | |
| # π Student Learning Assistant | |
| **Your personalized education companion** | |
| Complete each step to get customized learning recommendations and academic planning. | |
| """) | |
| with gr.Column(scale=1): | |
| dark_mode = gr.Checkbox(label="Dark Mode", value=False) | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=100): | |
| step1 = gr.Button("π 1. Transcript", elem_classes="incomplete-tab") | |
| with gr.Column(scale=1, min_width=100): | |
| step2 = gr.Button("π 2. Quiz", elem_classes="incomplete-tab", interactive=False) | |
| with gr.Column(scale=1, min_width=100): | |
| step3 = gr.Button("π€ 3. Profile", elem_classes="incomplete-tab", interactive=False) | |
| with gr.Column(scale=1, min_width=100): | |
| step4 = gr.Button("π 4. Review", elem_classes="incomplete-tab", interactive=False) | |
| with gr.Column(scale=1, min_width=100): | |
| step5 = gr.Button("π¬ 5. Assistant", elem_classes="incomplete-tab", interactive=False) | |
| with gr.Column(scale=1, min_width=100): | |
| step6 = gr.Button("π― 6. Goals", elem_classes="incomplete-tab", interactive=False) | |
| nav_message = gr.HTML(visible=False) | |
| with gr.Tabs(visible=True) as tabs: | |
| with gr.Tab("Transcript", id=0): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π Step 1: Upload Your Transcript") | |
| with gr.Group(elem_classes="file-upload"): | |
| file_input = gr.File( | |
| label="Drag and drop your transcript here (PDF or Image)", | |
| file_types=ALLOWED_FILE_TYPES, | |
| type="filepath" | |
| ) | |
| upload_btn = gr.Button("Analyze Transcript", variant="primary") | |
| file_error = gr.HTML(visible=False) | |
| with gr.Column(scale=2): | |
| transcript_output = gr.Textbox( | |
| label="Analysis Results", | |
| lines=10, | |
| interactive=False, | |
| elem_classes="transcript-results" | |
| ) | |
| with gr.Row(): | |
| gpa_viz = gr.Plot(label="GPA Visualization", visible=False) | |
| req_viz = gr.Plot(label="Requirements Visualization", visible=False) | |
| with gr.Row(): | |
| credits_viz = gr.Plot(label="Credits Distribution", visible=False) | |
| rigor_viz = gr.Plot(label="Course Rigor", visible=False) | |
| transcript_data = gr.State() | |
| file_input.change( | |
| fn=lambda f: ( | |
| gr.update(visible=False), | |
| gr.update(value="File ready for analysis!", visible=True) if f | |
| else gr.update(value="Please upload a file", visible=False) | |
| ), | |
| inputs=file_input, | |
| outputs=[file_error, transcript_output] | |
| ) | |
| def process_and_visualize(file_obj, tab_status): | |
| try: | |
| parsed_data = transcript_parser.parse_transcript(file_obj.name) | |
| gpa_analysis = academic_analyzer.analyze_gpa(parsed_data) | |
| grad_status = academic_analyzer.analyze_graduation_status(parsed_data) | |
| college_recs = academic_analyzer.generate_college_recommendations(parsed_data) | |
| results = [ | |
| f"## π GPA Analysis", | |
| f"**Rating:** {gpa_analysis['rating']}", | |
| f"{gpa_analysis['description']}", | |
| f"{gpa_analysis['comparison']}", | |
| "", | |
| f"## π Graduation Status", | |
| grad_status['status'], | |
| f"**Completion:** {grad_status['completion_percentage']:.1f}%", | |
| "", | |
| f"## π« College Recommendations" | |
| ] | |
| if college_recs['reach']: | |
| results.append("\n**Reach Schools:**") | |
| results.extend([f"- {school}" for school in college_recs['reach'][:3]]) | |
| if college_recs['target']: | |
| results.append("\n**Target Schools:**") | |
| results.extend([f"- {school}" for school in college_recs['target'][:3]]) | |
| if college_recs['safety']: | |
| results.append("\n**Safety Schools:**") | |
| results.extend([f"- {school}" for school in college_recs['safety'][:3]]) | |
| if gpa_analysis.get('improvement_tips'): | |
| results.append("\n**Improvement Tips:**") | |
| results.extend([f"- {tip}" for tip in gpa_analysis['improvement_tips']]) | |
| viz_updates = [ | |
| gr.update(visible=data_visualizer.create_gpa_visualization(parsed_data) is not None), | |
| gr.update(visible=data_visualizer.create_requirements_visualization(parsed_data) is not None), | |
| gr.update(visible=data_visualizer.create_credits_distribution_visualization(parsed_data) is not None), | |
| gr.update(visible=data_visualizer.create_course_rigor_visualization(parsed_data) is not None) | |
| ] | |
| tab_status[0] = True | |
| return "\n".join(results), parsed_data, *viz_updates, tab_status | |
| except Exception as e: | |
| error_msg = f"Error processing transcript: {str(e)}" | |
| logger.error(error_msg) | |
| raise gr.Error(f"{error_msg}\n\nPossible solutions:\n1. Try a different file format\n2. Ensure text is clear and not handwritten\n3. Check file size (<{MAX_FILE_SIZE_MB}MB)") | |
| upload_btn.click( | |
| fn=process_and_visualize, | |
| inputs=[file_input, tab_completed], | |
| outputs=[transcript_output, transcript_data, gpa_viz, req_viz, credits_viz, rigor_viz, tab_completed] | |
| ).then( | |
| fn=lambda: gr.update(elem_classes="completed-tab"), | |
| outputs=step1 | |
| ).then( | |
| fn=lambda: gr.update(interactive=True), | |
| outputs=step2 | |
| ) | |
| with gr.Tab("Learning Style Quiz", id=1): | |
| with gr.Column(): | |
| gr.Markdown("### π Step 2: Discover Your Learning Style") | |
| progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>") | |
| quiz_components = [] | |
| with gr.Accordion("Quiz Questions", open=True): | |
| for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)): | |
| with gr.Group(elem_classes="quiz-question"): | |
| q = gr.Radio( | |
| options, | |
| label=f"{i+1}. {question}", | |
| show_label=True | |
| ) | |
| quiz_components.append(q) | |
| with gr.Row(): | |
| quiz_submit = gr.Button("Submit Quiz", variant="primary") | |
| quiz_clear = gr.Button("Clear Answers") | |
| quiz_alert = gr.HTML(visible=False) | |
| learning_output = gr.Markdown( | |
| label="Your Learning Style Results", | |
| visible=False, | |
| elem_classes="quiz-results" | |
| ) | |
| for component in quiz_components: | |
| component.change( | |
| fn=lambda *answers: { | |
| progress: gr.HTML( | |
| f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>" | |
| ) | |
| }, | |
| inputs=quiz_components, | |
| outputs=progress | |
| ) | |
| quiz_submit.click( | |
| fn=lambda *answers: learning_style_quiz.evaluate_quiz(*answers), | |
| inputs=quiz_components, | |
| outputs=learning_output | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| outputs=learning_output | |
| ).then( | |
| fn=lambda: {1: True}, | |
| inputs=None, | |
| outputs=tab_completed | |
| ).then( | |
| fn=lambda: gr.update(elem_classes="completed-tab"), | |
| outputs=step2 | |
| ).then( | |
| fn=lambda: gr.update(interactive=True), | |
| outputs=step3 | |
| ) | |
| quiz_clear.click( | |
| fn=lambda: [None] * len(quiz_components), | |
| outputs=quiz_components | |
| ).then( | |
| fn=lambda: gr.HTML("<div class='progress-bar' style='width: 0%'></div>"), | |
| outputs=progress | |
| ) | |
| with gr.Tab("Personal Profile", id=2): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π€ Step 3: Tell Us About Yourself") | |
| with gr.Group(): | |
| name = gr.Textbox(label="Full Name", placeholder="Your name") | |
| age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0) | |
| interests = gr.Textbox( | |
| label="Your Interests/Hobbies", | |
| placeholder="e.g., Science, Music, Sports, Art..." | |
| ) | |
| save_personal_btn = gr.Button("Save Information", variant="primary") | |
| save_confirmation = gr.HTML(visible=False) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### β€οΈ Favorites") | |
| with gr.Group(): | |
| movie = gr.Textbox(label="Favorite Movie") | |
| movie_reason = gr.Textbox(label="Why do you like it?", lines=2) | |
| show = gr.Textbox(label="Favorite TV Show") | |
| show_reason = gr.Textbox(label="Why do you like it?", lines=2) | |
| book = gr.Textbox(label="Favorite Book") | |
| book_reason = gr.Textbox(label="Why do you like it?", lines=2) | |
| character = gr.Textbox(label="Favorite Character (from any story)") | |
| character_reason = gr.Textbox(label="Why do you like them?", lines=2) | |
| with gr.Accordion("Personal Blog (Optional)", open=False): | |
| blog = gr.Textbox( | |
| label="Share your thoughts", | |
| placeholder="Write something about yourself...", | |
| lines=5 | |
| ) | |
| save_personal_btn.click( | |
| fn=lambda n, a, i, ts: ( | |
| {2: True}, | |
| gr.update(elem_classes="completed-tab"), | |
| gr.update(interactive=True), | |
| gr.update(value="<div class='alert-box'>Information saved!</div>", visible=True) | |
| ), | |
| inputs=[name, age, interests, tab_completed], | |
| outputs=[tab_completed, step3, step4, save_confirmation] | |
| ) | |
| with gr.Tab("Save Profile", id=3): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π Step 4: Review & Save Your Profile") | |
| with gr.Group(): | |
| load_profile_dropdown = gr.Dropdown( | |
| label="Load Existing Profile", | |
| choices=profile_manager.list_profiles(session_token.value), | |
| visible=False | |
| ) | |
| with gr.Row(): | |
| load_btn = gr.Button("Load", visible=False) | |
| delete_btn = gr.Button("Delete", variant="stop", visible=False) | |
| save_btn = gr.Button("Save Profile", variant="primary") | |
| clear_btn = gr.Button("Clear Form") | |
| with gr.Column(scale=2): | |
| output_summary = gr.Markdown( | |
| "Your profile summary will appear here after saving.", | |
| label="Profile Summary" | |
| ) | |
| with gr.Row(): | |
| req_viz_matplotlib = gr.Plot(label="Requirements Progress", visible=False) | |
| credits_viz_matplotlib = gr.Plot(label="Credits Distribution", visible=False) | |
| save_btn.click( | |
| fn=profile_manager.save_profile, | |
| inputs=[ | |
| name, age, interests, transcript_data, learning_output, | |
| movie, movie_reason, show, show_reason, | |
| book, book_reason, character, character_reason, blog | |
| ], | |
| outputs=output_summary | |
| ).then( | |
| fn=lambda td: ( | |
| gr.update(visible=data_visualizer.create_requirements_visualization(td) is not None), | |
| gr.update(visible=data_visualizer.create_credits_distribution_visualization(td) is not None) | |
| ), | |
| inputs=transcript_data, | |
| outputs=[req_viz_matplotlib, credits_viz_matplotlib] | |
| ).then( | |
| fn=lambda: {3: True}, | |
| inputs=None, | |
| outputs=tab_completed | |
| ).then( | |
| fn=lambda: gr.update(elem_classes="completed-tab"), | |
| outputs=step4 | |
| ).then( | |
| fn=lambda: gr.update(interactive=True), | |
| outputs=step5 | |
| ).then( | |
| fn=lambda: gr.update(interactive=True), | |
| outputs=step6 | |
| ).then( | |
| fn=lambda: profile_manager.list_profiles(session_token.value), | |
| outputs=load_profile_dropdown | |
| ).then( | |
| fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))), | |
| outputs=load_btn | |
| ).then( | |
| fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))), | |
| outputs=delete_btn | |
| ) | |
| load_btn.click( | |
| fn=lambda: profile_manager.load_profile(load_profile_dropdown.value, session_token.value), | |
| inputs=None, | |
| outputs=None | |
| ).then( | |
| fn=lambda profile: ( | |
| profile.get('name', ''), | |
| profile.get('age', ''), | |
| profile.get('interests', ''), | |
| profile.get('learning_style', ''), | |
| profile.get('favorites', {}).get('movie', ''), | |
| profile.get('favorites', {}).get('movie_reason', ''), | |
| profile.get('favorites', {}).get('show', ''), | |
| profile.get('favorites', {}).get('show_reason', ''), | |
| profile.get('favorites', {}).get('book', ''), | |
| profile.get('favorites', {}).get('book_reason', ''), | |
| profile.get('favorites', {}).get('character', ''), | |
| profile.get('favorites', {}).get('character_reason', ''), | |
| profile.get('blog', ''), | |
| profile.get('transcript', {}), | |
| gr.update(value="Profile loaded successfully!"), | |
| data_visualizer.create_requirements_visualization(profile.get('transcript', {})), | |
| data_visualizer.create_credits_distribution_visualization(profile.get('transcript', {})) | |
| ), | |
| inputs=None, | |
| outputs=[ | |
| name, age, interests, learning_output, | |
| movie, movie_reason, show, show_reason, | |
| book, book_reason, character, character_reason, | |
| blog, transcript_data, output_summary, | |
| req_viz_matplotlib, credits_viz_matplotlib | |
| ] | |
| ) | |
| with gr.Tab("AI Assistant", id=4): | |
| gr.Markdown("## π¬ Your Personalized Learning Assistant") | |
| gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.") | |
| chatbot = gr.Chatbot(height=500) | |
| msg = gr.Textbox(label="Your Message") | |
| clear = gr.Button("Clear") | |
| def respond(message, chat_history): | |
| bot_message = teaching_assistant.generate_response(message, chat_history, session_token.value) | |
| chat_history.append((message, bot_message)) | |
| return "", chat_history | |
| msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| with gr.Tab("Goals & Planning", id=5): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π― Step 5: Set Academic Goals") | |
| with gr.Group(): | |
| goal_type = gr.Dropdown( | |
| label="Goal Type", | |
| choices=["GPA Improvement", "Course Completion", "Test Score", "Other"], | |
| value="GPA Improvement" | |
| ) | |
| goal_description = gr.Textbox(label="Goal Description") | |
| goal_target_date = gr.Textbox(label="Target Date (YYYY-MM-DD)", placeholder="2025-12-31") | |
| goal_target_value = gr.Number(label="Target Value (if applicable)", visible=False) | |
| add_goal_btn = gr.Button("Add Goal", variant="primary") | |
| gr.Markdown("### π Study Calendar") | |
| calendar_start_date = gr.Textbox(label="Calendar Start Date (YYYY-MM-DD)", value=datetime.date.today().isoformat()) | |
| generate_calendar_btn = gr.Button("Generate Study Calendar") | |
| with gr.Column(scale=2): | |
| gr.Markdown("### Your Goals") | |
| goals_output = gr.HTML() | |
| goal_viz = gr.Plot(label="Goal Progress", visible=False) | |
| gr.Markdown("### Your Study Calendar") | |
| calendar_output = gr.HTML() | |
| calendar_viz = gr.Plot(label="Calendar Visualization", visible=False) | |
| goal_type.change( | |
| fn=lambda gt: gr.update(visible=gt in ["GPA Improvement", "Test Score"]), | |
| inputs=goal_type, | |
| outputs=goal_target_value | |
| ) | |
| def update_goals_display(profile_name): | |
| goals = goal_tracker.get_goals(profile_name) | |
| if not goals: | |
| return ( | |
| "<div class='alert-box'>No goals set yet. Add your first goal above!</div>", | |
| gr.update(visible=False) | |
| ) | |
| goals_html = [] | |
| for goal in goals: | |
| progress = goal['progress'][-1]['value'] if goal['progress'] else 0 | |
| target = goal['target_value'] if goal['target_value'] is not None else "N/A" | |
| goals_html.append(f""" | |
| <div class='goal-card'> | |
| <h4>{goal['description']}</h4> | |
| <p><strong>Type:</strong> {goal['type']}</p> | |
| <p><strong>Target Date:</strong> {goal['target_date']}</p> | |
| <p><strong>Progress:</strong> {progress} / {target}</p> | |
| {f"<p><strong>Last Note:</strong> {goal['progress'][-1]['notes']}</p>" if goal['progress'] else ""} | |
| </div> | |
| """) | |
| return ( | |
| "\n".join(goals_html), | |
| gr.update(visible=goal_tracker.create_goal_visualization(goals) is not None) | |
| ) | |
| def update_calendar_display(profile_name, start_date_str): | |
| try: | |
| start_date = datetime.date.fromisoformat(start_date_str) | |
| except ValueError: | |
| return ( | |
| "<div class='error-message'>Invalid date format. Please use YYYY-MM-DD</div>", | |
| gr.update(visible=False) | |
| ) | |
| profile = profile_manager.load_profile(profile_name, session_token.value) | |
| if not profile: | |
| return ( | |
| "<div class='alert-box'>Please complete and save your profile first</div>", | |
| gr.update(visible=False) | |
| ) | |
| calendar = study_calendar.generate_study_calendar(profile, start_date.isoformat()) | |
| calendar_html = [] | |
| current_date = datetime.date.fromisoformat(calendar['start_date']) | |
| end_date = datetime.date.fromisoformat(calendar['end_date']) | |
| while current_date <= end_date: | |
| day_events = [ | |
| e for e in calendar['events'] | |
| if datetime.date.fromisoformat(e['date']) == current_date | |
| ] | |
| day_exams = [ | |
| e for e in calendar['exams'] | |
| if datetime.date.fromisoformat(e['date']) == current_date | |
| ] | |
| if day_events or day_exams: | |
| calendar_html.append(f"<h4>{current_date.strftime('%A, %B %d')}</h4>") | |
| for event in day_events: | |
| calendar_html.append(f""" | |
| <div class='calendar-event'> | |
| <p><strong>π {event['title']}</strong></p> | |
| <p>β±οΈ {event['duration']}</p> | |
| <p>{event['description']}</p> | |
| </div> | |
| """) | |
| for exam in day_exams: | |
| calendar_html.append(f""" | |
| <div class='calendar-event' style='border-left-color: #f44336;'> | |
| <p><strong>π {exam['title']}</strong></p> | |
| <p>β° All day</p> | |
| <p>Prepare by reviewing materials and practicing problems</p> | |
| </div> | |
| """) | |
| current_date += datetime.timedelta(days=1) | |
| return ( | |
| "\n".join(calendar_html) if calendar_html else "<div class='alert-box'>No study sessions scheduled yet</div>", | |
| gr.update(visible=study_calendar.create_calendar_visualization(calendar) is not None) | |
| ) | |
| add_goal_btn.click( | |
| fn=lambda gt, desc, date, val: ( | |
| goal_tracker.add_goal(name.value, gt, desc, date, val), | |
| update_goals_display(name.value) | |
| ), | |
| inputs=[goal_type, goal_description, goal_target_date, goal_target_value], | |
| outputs=[goals_output, goal_viz] | |
| ).then( | |
| fn=lambda: name.value, | |
| inputs=None, | |
| outputs=None | |
| ).then( | |
| fn=update_goals_display, | |
| inputs=name, | |
| outputs=[goals_output, goal_viz] | |
| ) | |
| generate_calendar_btn.click( | |
| fn=lambda date: update_calendar_display(name.value, date), | |
| inputs=calendar_start_date, | |
| outputs=[calendar_output, calendar_viz] | |
| ) | |
| def navigate_to_tab(tab_index: int, tab_completed_status: dict): | |
| for i in range(tab_index): | |
| if not tab_completed_status.get(i, False): | |
| messages = [ | |
| "Please complete the transcript analysis first", | |
| "Please complete the learning style quiz first", | |
| "Please fill out your personal information first", | |
| "Please save your profile first", | |
| "Please complete the previous steps first" | |
| ] | |
| return ( | |
| gr.Tabs(selected=i), | |
| gr.update( | |
| value=f"<div class='error-message'>β {messages[i]}</div>", | |
| visible=True | |
| ) | |
| ) | |
| return gr.Tabs(selected=tab_index), gr.update(visible=False) | |
| step1.click( | |
| lambda idx, status: navigate_to_tab(idx, status), | |
| inputs=[gr.State(0), tab_completed], | |
| outputs=[tabs, nav_message] | |
| ) | |
| step2.click( | |
| lambda idx, status: navigate_to_tab(idx, status), | |
| inputs=[gr.State(1), tab_completed], | |
| outputs=[tabs, nav_message] | |
| ) | |
| step3.click( | |
| lambda idx, status: navigate_to_tab(idx, status), | |
| inputs=[gr.State(2), tab_completed], | |
| outputs=[tabs, nav_message] | |
| ) | |
| step4.click( | |
| lambda idx, status: navigate_to_tab(idx, status), | |
| inputs=[gr.State(3), tab_completed], | |
| outputs=[tabs, nav_message] | |
| ) | |
| step5.click( | |
| lambda idx, status: navigate_to_tab(idx, status), | |
| inputs=[gr.State(4), tab_completed], | |
| outputs=[tabs, nav_message] | |
| ) | |
| step6.click( | |
| lambda idx, status: navigate_to_tab(idx, status), | |
| inputs=[gr.State(5), tab_completed], | |
| outputs=[tabs, nav_message] | |
| ) | |
| def toggle_dark_mode(dark): | |
| return gr.themes.Soft(primary_hue="blue", secondary_hue="gray") if not dark else gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate") | |
| dark_mode.change( | |
| fn=toggle_dark_mode, | |
| inputs=dark_mode, | |
| outputs=None | |
| ) | |
| app.load(fn=lambda: model_loader.load_model(), outputs=[]) | |
| return app | |
| app = create_enhanced_interface() | |
| if __name__ == "__main__": | |
| app.launch(server_name="0.0.0.0", server_port=7860) | |