Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -38,17 +38,17 @@ import matplotlib.pyplot as plt
|
|
38 |
# Enhanced Configuration
|
39 |
PROFILES_DIR = "student_profiles"
|
40 |
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
|
41 |
-
MAX_FILE_SIZE_MB = 10
|
42 |
MIN_AGE = 5
|
43 |
MAX_AGE = 120
|
44 |
SESSION_TOKEN_LENGTH = 32
|
45 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
46 |
ENCRYPTION_KEY = os.getenv("ENCRYPTION_KEY", Fernet.generate_key().decode())
|
47 |
-
SESSION_TIMEOUT = 3600 * 3
|
48 |
MAX_CONTEXT_HISTORY = 10
|
49 |
MAX_PROFILE_LOAD_ATTEMPTS = 3
|
50 |
|
51 |
-
# Initialize logging
|
52 |
logging.basicConfig(
|
53 |
level=logging.INFO,
|
54 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
@@ -59,10 +59,10 @@ logging.basicConfig(
|
|
59 |
)
|
60 |
logger = logging.getLogger(__name__)
|
61 |
|
62 |
-
# Model configuration
|
63 |
-
MODEL_NAME = "deepseek-ai/deepseek-llm-7b"
|
64 |
|
65 |
-
# Initialize Hugging Face API
|
66 |
if HF_TOKEN:
|
67 |
hf_api = None
|
68 |
for attempt in range(3):
|
@@ -73,7 +73,7 @@ if HF_TOKEN:
|
|
73 |
break
|
74 |
except Exception as e:
|
75 |
logger.error(f"Attempt {attempt + 1} failed to initialize Hugging Face API: {str(e)}")
|
76 |
-
time.sleep(2 ** attempt)
|
77 |
|
78 |
# ========== LEARNING STYLE QUIZ ==========
|
79 |
class LearningStyleQuiz:
|
@@ -119,7 +119,6 @@ class LearningStyleQuiz:
|
|
119 |
'kinesthetic': 0
|
120 |
}
|
121 |
|
122 |
-
# Map each answer to a learning style
|
123 |
for answer in answers:
|
124 |
if answer.startswith("See") or answer.startswith("Draw") or answer.startswith("Watch") or "diagram" in answer.lower():
|
125 |
style_counts['visual'] += 1
|
@@ -133,7 +132,6 @@ class LearningStyleQuiz:
|
|
133 |
primary_style = max(style_counts, key=style_counts.get)
|
134 |
secondary_styles = sorted(style_counts.items(), key=lambda x: x[1], reverse=True)[1:3]
|
135 |
|
136 |
-
# Generate results
|
137 |
result = [
|
138 |
"## π― Your Learning Style Results",
|
139 |
f"Your primary learning style is **{primary_style.capitalize()}**",
|
@@ -183,7 +181,7 @@ class LearningStyleQuiz:
|
|
183 |
# Initialize learning style quiz
|
184 |
learning_style_quiz = LearningStyleQuiz()
|
185 |
|
186 |
-
# ==========
|
187 |
class ModelLoader:
|
188 |
def __init__(self):
|
189 |
self.model = None
|
@@ -196,7 +194,6 @@ class ModelLoader:
|
|
196 |
self.max_retries = 3
|
197 |
|
198 |
def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]:
|
199 |
-
"""Enhanced lazy load the model with progress feedback and retry logic"""
|
200 |
if self.loaded:
|
201 |
return self.model, self.tokenizer
|
202 |
|
@@ -212,7 +209,6 @@ class ModelLoader:
|
|
212 |
if progress:
|
213 |
progress(0.1, desc="Initializing model environment...")
|
214 |
|
215 |
-
# Clear GPU cache more aggressively
|
216 |
if self.device == "cuda":
|
217 |
torch.cuda.empty_cache()
|
218 |
torch.cuda.reset_peak_memory_stats()
|
@@ -220,7 +216,6 @@ class ModelLoader:
|
|
220 |
if progress:
|
221 |
progress(0.2, desc="Loading tokenizer...")
|
222 |
|
223 |
-
# Tokenizer with more error handling
|
224 |
tokenizer = None
|
225 |
for attempt in range(3):
|
226 |
try:
|
@@ -239,7 +234,6 @@ class ModelLoader:
|
|
239 |
if progress:
|
240 |
progress(0.5, desc="Loading model (this may take a few minutes)...")
|
241 |
|
242 |
-
# Model configuration with fallbacks
|
243 |
model_kwargs = {
|
244 |
"trust_remote_code": True,
|
245 |
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
|
@@ -248,7 +242,6 @@ class ModelLoader:
|
|
248 |
"offload_folder": "offload"
|
249 |
}
|
250 |
|
251 |
-
# Add max_memory configuration if multiple GPUs available
|
252 |
if torch.cuda.device_count() > 1:
|
253 |
model_kwargs["max_memory"] = {i: "20GiB" for i in range(torch.cuda.device_count())}
|
254 |
|
@@ -275,7 +268,6 @@ class ModelLoader:
|
|
275 |
logger.warning(f"Model loading attempt {attempt + 1} failed: {str(e)}")
|
276 |
time.sleep(2 ** attempt)
|
277 |
|
278 |
-
# Test inference
|
279 |
if progress:
|
280 |
progress(0.8, desc="Verifying model...")
|
281 |
test_input = tokenizer("Test", return_tensors="pt").to(self.device)
|
@@ -307,580 +299,89 @@ model_loader = ModelLoader()
|
|
307 |
def get_model_and_tokenizer():
|
308 |
return model_loader.load_model()
|
309 |
|
310 |
-
# ==========
|
311 |
-
class
|
312 |
-
def __init__(self, key: str):
|
313 |
-
self.cipher = Fernet(key.encode())
|
314 |
-
|
315 |
-
def encrypt(self, data: str) -> str:
|
316 |
-
return self.cipher.encrypt(data.encode()).decode()
|
317 |
-
|
318 |
-
def decrypt(self, encrypted_data: str) -> str:
|
319 |
-
return self.cipher.decrypt(encrypted_data.encode()).decode()
|
320 |
-
|
321 |
-
encryptor = DataEncryptor(ENCRYPTION_KEY)
|
322 |
-
|
323 |
-
def generate_session_token() -> str:
|
324 |
-
alphabet = string.ascii_letters + string.digits
|
325 |
-
return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH))
|
326 |
-
|
327 |
-
def sanitize_input(text: str) -> str:
|
328 |
-
if not text:
|
329 |
-
return ""
|
330 |
-
text = html.escape(text.strip())
|
331 |
-
text = re.sub(r'<[^>]*>', '', text)
|
332 |
-
text = re.sub(r'[^\w\s\-.,!?@#\$%^&*()+=]', '', text)
|
333 |
-
return text
|
334 |
-
|
335 |
-
def validate_name(name: str) -> str:
|
336 |
-
name = name.strip()
|
337 |
-
if not name:
|
338 |
-
raise ValueError("Name cannot be empty.")
|
339 |
-
if len(name) > 100:
|
340 |
-
raise ValueError("Name is too long (maximum 100 characters).")
|
341 |
-
if any(c.isdigit() for c in name):
|
342 |
-
raise ValueError("Name cannot contain numbers.")
|
343 |
-
return name
|
344 |
-
|
345 |
-
def validate_age(age: Union[int, float, str]) -> int:
|
346 |
-
try:
|
347 |
-
age_int = int(age)
|
348 |
-
if not MIN_AGE <= age_int <= MAX_AGE:
|
349 |
-
raise ValueError(f"Age must be between {MIN_AGE} and {MAX_AGE}.")
|
350 |
-
return age_int
|
351 |
-
except (ValueError, TypeError):
|
352 |
-
raise ValueError("Please enter a valid age number.")
|
353 |
-
|
354 |
-
def validate_file(file_obj) -> None:
|
355 |
-
if not file_obj:
|
356 |
-
raise ValueError("Please upload a file first")
|
357 |
-
|
358 |
-
file_ext = os.path.splitext(file_obj.name)[1].lower()
|
359 |
-
if file_ext not in ALLOWED_FILE_TYPES:
|
360 |
-
raise ValueError(f"Invalid file type. Allowed types: {', '.join(ALLOWED_FILE_TYPES)}")
|
361 |
-
|
362 |
-
file_size = os.path.getsize(file_obj.name) / (1024 * 1024)
|
363 |
-
if file_size > MAX_FILE_SIZE_MB:
|
364 |
-
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
|
365 |
-
|
366 |
-
def remove_sensitive_info(text: str) -> str:
|
367 |
-
"""Enhanced PII removal with more patterns"""
|
368 |
-
patterns = [
|
369 |
-
(r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED-SSN]'),
|
370 |
-
(r'\b\d{6,9}\b', '[ID]'),
|
371 |
-
(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]'),
|
372 |
-
(r'\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b', '[IP]'),
|
373 |
-
(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', '[NAME]'), # Simple name pattern
|
374 |
-
(r'\b\d{3}\) \d{3}-\d{4}\b', '[PHONE]'),
|
375 |
-
(r'\b\d{1,5} [A-Z][a-z]+ [A-Z][a-z]+, [A-Z]{2} \d{5}\b', '[ADDRESS]')
|
376 |
-
]
|
377 |
-
|
378 |
-
for pattern, replacement in patterns:
|
379 |
-
text = re.sub(pattern, replacement, text)
|
380 |
-
return text
|
381 |
-
|
382 |
-
# ========== ENHANCED PDF PARSING ==========
|
383 |
-
class EnhancedTranscriptParser:
|
384 |
def __init__(self):
|
385 |
-
self.
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
self.transcript_templates = {
|
391 |
-
'miami_dade': self._parse_miami_dade_transcript,
|
392 |
-
'broward': self._parse_broward_transcript,
|
393 |
-
'florida': self._parse_florida_standard_transcript,
|
394 |
-
'default': self._parse_generic_transcript
|
395 |
-
}
|
396 |
-
|
397 |
-
def detect_transcript_type(self, text: str) -> str:
|
398 |
-
"""Detect the transcript format based on patterns"""
|
399 |
-
text = text.upper()
|
400 |
-
for template, pattern in self.common_school_patterns.items():
|
401 |
-
if re.search(pattern, text):
|
402 |
-
return template
|
403 |
-
return 'default'
|
404 |
-
|
405 |
-
def parse_transcript(self, file_path: str, file_ext: str) -> Dict:
|
406 |
-
"""Enhanced parsing with format detection and fallbacks"""
|
407 |
-
try:
|
408 |
-
# First extract text with appropriate method
|
409 |
-
text = self.extract_text_from_file(file_path, file_ext)
|
410 |
-
if not text.strip():
|
411 |
-
raise ValueError("No text could be extracted from file")
|
412 |
-
|
413 |
-
# Detect transcript type
|
414 |
-
transcript_type = self.detect_transcript_type(text)
|
415 |
-
logger.info(f"Detected transcript type: {transcript_type}")
|
416 |
-
|
417 |
-
# Try specialized parser first
|
418 |
-
parser_func = self.transcript_templates.get(transcript_type, self._parse_generic_transcript)
|
419 |
-
parsed_data = parser_func(text)
|
420 |
-
|
421 |
-
if not parsed_data:
|
422 |
-
logger.warning(f"Specialized parser failed, trying generic parser")
|
423 |
-
parsed_data = self._parse_generic_transcript(text)
|
424 |
-
|
425 |
-
if not parsed_data:
|
426 |
-
raise ValueError("No data could be parsed from transcript")
|
427 |
-
|
428 |
-
# Validate and enhance parsed data
|
429 |
-
self.validate_parsed_data(parsed_data)
|
430 |
-
self.enhance_parsed_data(parsed_data)
|
431 |
-
|
432 |
-
return parsed_data
|
433 |
-
|
434 |
-
except Exception as e:
|
435 |
-
logger.error(f"Error parsing transcript: {str(e)}")
|
436 |
-
raise ValueError(f"Couldn't parse transcript content. Error: {str(e)}")
|
437 |
-
|
438 |
-
def extract_text_from_file(self, file_path: str, file_ext: str) -> str:
|
439 |
-
"""Enhanced text extraction with multiple fallbacks"""
|
440 |
-
text = ""
|
441 |
-
|
442 |
-
try:
|
443 |
-
if file_ext == '.pdf':
|
444 |
-
# Try pdfplumber first for better table handling
|
445 |
-
try:
|
446 |
-
with pdfplumber.open(file_path) as pdf:
|
447 |
-
for page in pdf.pages:
|
448 |
-
# Try to extract tables first
|
449 |
-
tables = page.extract_tables({
|
450 |
-
"vertical_strategy": "text",
|
451 |
-
"horizontal_strategy": "text",
|
452 |
-
"intersection_y_tolerance": 10,
|
453 |
-
"join_tolerance": 20
|
454 |
-
})
|
455 |
-
|
456 |
-
if tables:
|
457 |
-
for table in tables:
|
458 |
-
for row in table:
|
459 |
-
text += " | ".join(str(cell).strip() for cell in row if cell) + "\n"
|
460 |
-
|
461 |
-
# Fall back to text extraction if tables are empty
|
462 |
-
page_text = page.extract_text()
|
463 |
-
if page_text:
|
464 |
-
text += page_text + "\n"
|
465 |
-
|
466 |
-
if not text.strip():
|
467 |
-
raise ValueError("PDFPlumber returned empty text")
|
468 |
-
|
469 |
-
except Exception as e:
|
470 |
-
logger.warning(f"PDFPlumber failed: {str(e)}. Trying PyMuPDF...")
|
471 |
-
doc = fitz.open(file_path)
|
472 |
-
for page in doc:
|
473 |
-
text += page.get_text("text", flags=fitz.TEXT_PRESERVE_IMAGES) + '\n'
|
474 |
-
|
475 |
-
elif file_ext in ['.png', '.jpg', '.jpeg']:
|
476 |
-
text = self.extract_text_with_enhanced_ocr(file_path)
|
477 |
-
|
478 |
-
text = self.clean_extracted_text(text)
|
479 |
-
|
480 |
-
if not text.strip():
|
481 |
-
raise ValueError("The file appears to be empty or contains no readable text.")
|
482 |
-
|
483 |
-
return text
|
484 |
-
|
485 |
-
except Exception as e:
|
486 |
-
logger.error(f"Text extraction error: {str(e)}")
|
487 |
-
raise ValueError(f"Failed to extract text: {str(e)}")
|
488 |
-
|
489 |
-
def extract_text_with_enhanced_ocr(self, file_path: str) -> str:
|
490 |
-
"""Enhanced OCR with preprocessing"""
|
491 |
-
try:
|
492 |
-
image = Image.open(file_path)
|
493 |
-
|
494 |
-
# Preprocessing for better OCR
|
495 |
-
image = image.convert('L') # Grayscale
|
496 |
-
image = image.point(lambda x: 0 if x < 140 else 255, '1') # Thresholding
|
497 |
-
|
498 |
-
# Custom config for academic documents
|
499 |
-
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-.,:()%$@ '
|
500 |
-
|
501 |
-
# Try with different page segmentation modes
|
502 |
-
for psm in [6, 11, 4]: # Try different modes
|
503 |
-
text = pytesseract.image_to_string(image, config=f"{custom_config} --psm {psm}")
|
504 |
-
if len(text.strip()) > 50: # If we got reasonable text
|
505 |
-
break
|
506 |
-
|
507 |
-
return text
|
508 |
-
except Exception as e:
|
509 |
-
raise ValueError(f"OCR processing failed: {str(e)}")
|
510 |
-
|
511 |
-
def clean_extracted_text(self, text: str) -> str:
|
512 |
-
"""Enhanced cleaning for academic transcripts"""
|
513 |
-
# Normalize whitespace and case
|
514 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
515 |
-
|
516 |
-
# Fix common OCR errors in academic contexts
|
517 |
-
replacements = {
|
518 |
-
'GradeLv1': 'GradeLvl',
|
519 |
-
'CrsNu m': 'CrsNum',
|
520 |
-
'YOG': 'Year of Graduation',
|
521 |
-
'Comm Serv': 'Community Service',
|
522 |
-
r'\bA\s*-\s*': 'A-', # Fix requirement codes
|
523 |
-
r'\bB\s*-\s*': 'B-',
|
524 |
-
r'\bC\s*-\s*': 'C-',
|
525 |
-
r'\bD\s*-\s*': 'D-',
|
526 |
-
r'\bE\s*-\s*': 'E-',
|
527 |
-
r'\bF\s*-\s*': 'F-',
|
528 |
-
r'\bG\s*-\s*': 'G-',
|
529 |
-
r'\bZ\s*-\s*': 'Z-',
|
530 |
-
'lnProgress': 'inProgress',
|
531 |
-
'lP': 'IP',
|
532 |
-
'AP\s': 'AP ',
|
533 |
-
'DE\s': 'DE ',
|
534 |
-
'Honors\s': 'Honors ',
|
535 |
-
'lB': 'IB'
|
536 |
-
}
|
537 |
-
|
538 |
-
for pattern, replacement in replacements.items():
|
539 |
-
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
|
540 |
-
|
541 |
-
# Fix course codes with spaces
|
542 |
-
text = re.sub(r'(\b[A-Z]{2,4})\s(\d{3}[A-Z]?\b)', r'\1\2', text)
|
543 |
-
|
544 |
-
return text
|
545 |
-
|
546 |
-
def validate_parsed_data(self, parsed_data: Dict) -> bool:
|
547 |
-
"""Enhanced validation with more fields"""
|
548 |
-
required_fields = [
|
549 |
-
('student_info', 'name'),
|
550 |
-
('student_info', 'id'),
|
551 |
-
('requirements',), # At least some requirements
|
552 |
-
('course_history',) # At least some courses
|
553 |
-
]
|
554 |
-
|
555 |
-
for path in required_fields:
|
556 |
-
current = parsed_data
|
557 |
-
for key in path:
|
558 |
-
if key not in current:
|
559 |
-
raise ValueError(f"Missing critical field: {'.'.join(path)}")
|
560 |
-
current = current[key]
|
561 |
-
return True
|
562 |
-
|
563 |
-
def enhance_parsed_data(self, parsed_data: Dict) -> Dict:
|
564 |
-
"""Add derived fields and calculations"""
|
565 |
-
# Calculate total credits if not present
|
566 |
-
if 'total_credits' not in parsed_data.get('student_info', {}):
|
567 |
-
try:
|
568 |
-
total_credits = sum(
|
569 |
-
float(course.get('credits', 0))
|
570 |
-
for course in parsed_data.get('course_history', [])
|
571 |
-
if course and str(course.get('credits', '0')).replace('.', '').isdigit()
|
572 |
-
)
|
573 |
-
parsed_data['student_info']['total_credits'] = round(total_credits, 2)
|
574 |
-
except:
|
575 |
-
pass
|
576 |
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
grades = []
|
581 |
-
grade_points = {
|
582 |
-
'A': 4.0, 'A-': 3.7, 'B+': 3.3, 'B': 3.0, 'B-': 2.7,
|
583 |
-
'C+': 2.3, 'C': 2.0, 'C-': 1.7, 'D+': 1.3, 'D': 1.0, 'F': 0.0
|
584 |
-
}
|
585 |
-
|
586 |
-
for course in parsed_data.get('course_history', []):
|
587 |
-
grade = course.get('grade_earned', '').upper()
|
588 |
-
if grade in grade_points:
|
589 |
-
grades.append(grade_points[grade])
|
590 |
-
|
591 |
-
if grades:
|
592 |
-
unweighted_gpa = sum(grades) / len(grades)
|
593 |
-
parsed_data['student_info']['unweighted_gpa'] = round(unweighted_gpa, 2)
|
594 |
-
|
595 |
-
# Simple weighted GPA calculation (AP/IB/DE courses get +1)
|
596 |
-
weighted_grades = []
|
597 |
-
for course in parsed_data.get('course_history', []):
|
598 |
-
grade = course.get('grade_earned', '').upper()
|
599 |
-
if grade in grade_points:
|
600 |
-
weight = 1.0 if any(x in course.get('course_name', '').upper()
|
601 |
-
for x in ['AP', 'IB', 'DE', 'HONORS']) else 0.0
|
602 |
-
weighted_grades.append(grade_points[grade] + weight)
|
603 |
-
|
604 |
-
if weighted_grades:
|
605 |
-
parsed_data['student_info']['weighted_gpa'] = round(sum(weighted_grades) / len(weighted_grades), 2)
|
606 |
-
except:
|
607 |
-
pass
|
608 |
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
'assessments': {}
|
619 |
-
}
|
620 |
-
|
621 |
-
# Extract student info with more robust pattern
|
622 |
-
student_info_match = re.search(
|
623 |
-
r"(\d{7})\s*-\s*(.*?)\s*\n.*?Current Grade:\s*(\d+).*?YOG\s*(\d{4})",
|
624 |
-
text,
|
625 |
-
re.DOTALL | re.IGNORECASE
|
626 |
-
)
|
627 |
-
if student_info_match:
|
628 |
-
parsed_data['student_info'] = {
|
629 |
-
'id': student_info_match.group(1),
|
630 |
-
'name': student_info_match.group(2).strip(),
|
631 |
-
'grade': student_info_match.group(3),
|
632 |
-
'year_of_graduation': student_info_match.group(4),
|
633 |
-
'district': 'Miami-Dade'
|
634 |
-
}
|
635 |
-
|
636 |
-
# Extract GPA information with more flexible patterns
|
637 |
-
gpa_patterns = [
|
638 |
-
r"(?:Un.?weighted|Weighted)\s*GPA\s*([\d.]+)",
|
639 |
-
r"GPA\s*\(.*?\)\s*:\s*([\d.]+)",
|
640 |
-
r"Grade\s*Point\s*Average\s*:\s*([\d.]+)"
|
641 |
-
]
|
642 |
-
|
643 |
-
gpa_values = []
|
644 |
-
for pattern in gpa_patterns:
|
645 |
-
gpa_values.extend(re.findall(pattern, text, re.IGNORECASE))
|
646 |
-
if len(gpa_values) >= 2:
|
647 |
-
break
|
648 |
-
|
649 |
-
if len(gpa_values) >= 1:
|
650 |
-
parsed_data['student_info']['unweighted_gpa'] = float(gpa_values[0])
|
651 |
-
if len(gpa_values) >= 2:
|
652 |
-
parsed_data['student_info']['weighted_gpa'] = float(gpa_values[1])
|
653 |
-
|
654 |
-
# Extract community service info
|
655 |
-
service_hours_match = re.search(r"Comm\s*Serv\s*Hours\s*(\d+)", text, re.IGNORECASE)
|
656 |
-
if service_hours_match:
|
657 |
-
parsed_data['student_info']['community_service_hours'] = int(service_hours_match.group(1))
|
658 |
-
|
659 |
-
service_date_match = re.search(r"Comm\s*Serv\s*Date\s*(\d{2}/\d{2}/\d{4})", text, re.IGNORECASE)
|
660 |
-
if service_date_match:
|
661 |
-
parsed_data['student_info']['community_service_date'] = service_date_match.group(1)
|
662 |
-
|
663 |
-
# Extract credits info
|
664 |
-
credits_match = re.search(r"Total\s*Credits\s*Earned\s*([\d.]+)", text, re.IGNORECASE)
|
665 |
-
if credits_match:
|
666 |
-
parsed_data['student_info']['total_credits'] = float(credits_match.group(1))
|
667 |
-
|
668 |
-
# Extract virtual grade
|
669 |
-
virtual_grade_match = re.search(r"Virtual\s*Grade\s*([A-Z])", text, re.IGNORECASE)
|
670 |
-
if virtual_grade_match:
|
671 |
-
parsed_data['student_info']['virtual_grade'] = virtual_grade_match.group(1)
|
672 |
-
|
673 |
-
# Enhanced requirements section parsing
|
674 |
-
req_section = re.search(
|
675 |
-
r"(?:Graduation\s*Requirements|Requirements\s*Summary).*?(Code\s*Description.*?)(?:\n\s*\n|$)",
|
676 |
-
text,
|
677 |
-
re.DOTALL | re.IGNORECASE
|
678 |
-
)
|
679 |
-
|
680 |
-
if req_section:
|
681 |
-
req_lines = [line.strip() for line in req_section.group(1).split('\n') if line.strip()]
|
682 |
-
for line in req_lines:
|
683 |
-
if '|' in line: # Table format
|
684 |
-
parts = [part.strip() for part in line.split('|') if part.strip()]
|
685 |
-
if len(parts) >= 5: # More lenient check for number of columns
|
686 |
-
try:
|
687 |
-
code = parts[0] if len(parts) > 0 else ""
|
688 |
-
description = parts[1] if len(parts) > 1 else ""
|
689 |
-
required = float(parts[2]) if len(parts) > 2 and parts[2].replace('.','').isdigit() else 0.0
|
690 |
-
waived = float(parts[3]) if len(parts) > 3 and parts[3].replace('.','').isdigit() else 0.0
|
691 |
-
completed = float(parts[4]) if len(parts) > 4 and parts[4].replace('.','').isdigit() else 0.0
|
692 |
-
status = parts[5] if len(parts) > 5 else ""
|
693 |
-
|
694 |
-
# Extract percentage if available
|
695 |
-
percent = 0.0
|
696 |
-
if status:
|
697 |
-
percent_match = re.search(r"(\d+)%", status)
|
698 |
-
if percent_match:
|
699 |
-
percent = float(percent_match.group(1))
|
700 |
-
|
701 |
-
parsed_data['requirements'][code] = {
|
702 |
-
"description": description,
|
703 |
-
"required": required,
|
704 |
-
"waived": waived,
|
705 |
-
"completed": completed,
|
706 |
-
"percent_complete": percent,
|
707 |
-
"status": status
|
708 |
-
}
|
709 |
-
except (IndexError, ValueError) as e:
|
710 |
-
logger.warning(f"Skipping malformed requirement line: {line}. Error: {str(e)}")
|
711 |
-
continue
|
712 |
-
|
713 |
-
# Enhanced course history parsing
|
714 |
-
course_section = re.search(
|
715 |
-
r"(?:Course\s*History|Academic\s*Record).*?(Requirement.*?School Year.*?GradeLv1.*?CrsNum.*?Description.*?Term.*?DstNumber.*?FG.*?Incl.*?Credits.*?)(?:\n\s*\n|$)",
|
716 |
-
text,
|
717 |
-
re.DOTALL | re.IGNORECASE
|
718 |
-
)
|
719 |
-
|
720 |
-
if course_section:
|
721 |
-
course_lines = [
|
722 |
-
line.strip() for line in course_section.group(1).split('\n')
|
723 |
-
if line.strip() and '|' in line
|
724 |
-
]
|
725 |
-
|
726 |
-
for line in course_lines:
|
727 |
-
parts = [part.strip() for part in line.split('|') if part.strip()]
|
728 |
-
|
729 |
-
try:
|
730 |
-
course = {
|
731 |
-
'requirement': parts[0] if len(parts) > 0 else "",
|
732 |
-
'school_year': parts[1] if len(parts) > 1 else "",
|
733 |
-
'grade_level': parts[2] if len(parts) > 2 else "",
|
734 |
-
'course_code': parts[3] if len(parts) > 3 else "",
|
735 |
-
'description': parts[4] if len(parts) > 4 else "",
|
736 |
-
'term': parts[5] if len(parts) > 5 else "",
|
737 |
-
'district_number': parts[6] if len(parts) > 6 else "",
|
738 |
-
'fg': parts[7] if len(parts) > 7 else "",
|
739 |
-
'included': parts[8] if len(parts) > 8 else "",
|
740 |
-
'credits': parts[9] if len(parts) > 9 else "0",
|
741 |
-
'status': 'Completed' if parts[9] and parts[9] != 'inProgress' else 'In Progress'
|
742 |
-
}
|
743 |
-
|
744 |
-
# Handle credits conversion
|
745 |
-
if "inprogress" in course['credits'].lower() or not course['credits']:
|
746 |
-
course['credits'] = "0"
|
747 |
-
elif not course['credits'].replace('.','').isdigit():
|
748 |
-
course['credits'] = "0"
|
749 |
-
|
750 |
-
parsed_data['course_history'].append(course)
|
751 |
-
except (IndexError, ValueError) as e:
|
752 |
-
logger.warning(f"Skipping malformed course line: {line}. Error: {str(e)}")
|
753 |
-
continue
|
754 |
-
|
755 |
-
return parsed_data
|
756 |
|
757 |
-
except Exception as e:
|
758 |
-
logger.warning(f"Miami-Dade transcript parsing failed: {str(e)}")
|
759 |
-
return None
|
760 |
-
|
761 |
-
def _parse_broward_transcript(self, text: str) -> Optional[Dict]:
|
762 |
-
"""Parser for Broward County transcripts"""
|
763 |
-
try:
|
764 |
parsed_data = {
|
765 |
-
'student_info':
|
766 |
-
'requirements':
|
767 |
-
'course_history':
|
768 |
-
'assessments': {}
|
769 |
}
|
770 |
|
771 |
-
# Broward-specific patterns
|
772 |
-
student_info_match = re.search(
|
773 |
-
r"Student:\s*(\d+)\s*-\s*(.*?)\s*Grade:\s*(\d+)",
|
774 |
-
text,
|
775 |
-
re.IGNORECASE
|
776 |
-
)
|
777 |
-
if student_info_match:
|
778 |
-
parsed_data['student_info'] = {
|
779 |
-
'id': student_info_match.group(1),
|
780 |
-
'name': student_info_match.group(2).strip(),
|
781 |
-
'grade': student_info_match.group(3),
|
782 |
-
'district': 'Broward'
|
783 |
-
}
|
784 |
-
|
785 |
-
# Add Broward-specific parsing logic here...
|
786 |
-
|
787 |
return parsed_data
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
return parsed_data
|
818 |
-
except Exception as e:
|
819 |
-
logger.warning(f"Florida standard transcript parsing failed: {str(e)}")
|
820 |
-
return None
|
821 |
-
|
822 |
-
def _parse_generic_transcript(self, text: str) -> Optional[Dict]:
|
823 |
-
"""Fallback parser for generic transcripts"""
|
824 |
-
try:
|
825 |
-
parsed_data = {
|
826 |
-
'student_info': {},
|
827 |
-
'requirements': {},
|
828 |
-
'course_history': [],
|
829 |
-
'assessments': {}
|
830 |
}
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
if courses:
|
851 |
-
for course in courses:
|
852 |
-
if len(course) == 4:
|
853 |
-
parsed_data['course_history'].append({
|
854 |
-
'course_code': course[0],
|
855 |
-
'description': course[1],
|
856 |
-
'grade': course[2],
|
857 |
-
'credits': course[3]
|
858 |
-
})
|
859 |
-
elif len(course) == 5:
|
860 |
-
parsed_data['course_history'].append({
|
861 |
-
'school_year': course[0],
|
862 |
-
'course_code': course[1],
|
863 |
-
'description': course[2],
|
864 |
-
'grade': course[3],
|
865 |
-
'credits': course[4]
|
866 |
-
})
|
867 |
-
elif len(course) == 3:
|
868 |
-
parsed_data['course_history'].append({
|
869 |
-
'description': course[0],
|
870 |
-
'grade': course[1],
|
871 |
-
'credits': course[2]
|
872 |
-
})
|
873 |
-
break
|
874 |
-
|
875 |
-
return parsed_data if parsed_data['course_history'] else None
|
876 |
-
except Exception as e:
|
877 |
-
logger.warning(f"Generic transcript parsing failed: {str(e)}")
|
878 |
-
return None
|
879 |
|
880 |
-
# Initialize
|
881 |
-
transcript_parser =
|
882 |
|
883 |
-
# ==========
|
884 |
class AcademicAnalyzer:
|
885 |
def __init__(self):
|
886 |
self.gpa_scale = {
|
@@ -896,7 +397,6 @@ class AcademicAnalyzer:
|
|
896 |
}
|
897 |
|
898 |
def analyze_gpa(self, parsed_data: Dict) -> Dict:
|
899 |
-
"""Enhanced GPA analysis with more detailed feedback"""
|
900 |
analysis = {
|
901 |
'rating': '',
|
902 |
'description': '',
|
@@ -954,7 +454,6 @@ class AcademicAnalyzer:
|
|
954 |
"Focus on fundamental study skills"
|
955 |
]
|
956 |
|
957 |
-
# Add comparison between weighted and unweighted
|
958 |
if weighted_gpa > 0 and unweighted_gpa > 0:
|
959 |
diff = weighted_gpa - unweighted_gpa
|
960 |
if diff > 0.5:
|
@@ -974,7 +473,6 @@ class AcademicAnalyzer:
|
|
974 |
}
|
975 |
|
976 |
def analyze_graduation_status(self, parsed_data: Dict) -> Dict:
|
977 |
-
"""Enhanced graduation analysis with requirement breakdown"""
|
978 |
analysis = {
|
979 |
'status': '',
|
980 |
'completion_percentage': 0,
|
@@ -998,7 +496,6 @@ class AcademicAnalyzer:
|
|
998 |
|
999 |
analysis['completion_percentage'] = (total_completed / total_required) * 100 if total_required > 0 else 0
|
1000 |
|
1001 |
-
# Identify missing requirements
|
1002 |
analysis['missing_requirements'] = [
|
1003 |
{
|
1004 |
'code': code,
|
@@ -1010,7 +507,6 @@ class AcademicAnalyzer:
|
|
1010 |
if req and float(req.get('completed', 0)) < float(req.get('required', 0))
|
1011 |
]
|
1012 |
|
1013 |
-
# Determine status message
|
1014 |
current_grade = parsed_data.get('student_info', {}).get('grade', '')
|
1015 |
grad_year = parsed_data.get('student_info', {}).get('year_of_graduation', '')
|
1016 |
|
@@ -1030,7 +526,6 @@ class AcademicAnalyzer:
|
|
1030 |
analysis['status'] = f"β You've only completed {analysis['completion_percentage']:.1f}% of requirements. Immediate action needed."
|
1031 |
analysis['on_track'] = False
|
1032 |
|
1033 |
-
# Add timeline projection if possible
|
1034 |
if current_grade and grad_year:
|
1035 |
remaining_credits = total_required - total_completed
|
1036 |
years_remaining = int(grad_year) - datetime.datetime.now().year - int(current_grade)
|
@@ -1053,7 +548,6 @@ class AcademicAnalyzer:
|
|
1053 |
}
|
1054 |
|
1055 |
def analyze_course_rigor(self, parsed_data: Dict) -> Dict:
|
1056 |
-
"""Analyze the difficulty level of courses taken"""
|
1057 |
analysis = {
|
1058 |
'advanced_courses': 0,
|
1059 |
'honors_courses': 0,
|
@@ -1127,7 +621,6 @@ class AcademicAnalyzer:
|
|
1127 |
}
|
1128 |
|
1129 |
def generate_college_recommendations(self, parsed_data: Dict) -> Dict:
|
1130 |
-
"""Enhanced college recommendations based on full profile"""
|
1131 |
recommendations = {
|
1132 |
'reach': [],
|
1133 |
'target': [],
|
@@ -1137,12 +630,10 @@ class AcademicAnalyzer:
|
|
1137 |
}
|
1138 |
|
1139 |
try:
|
1140 |
-
# Get key metrics
|
1141 |
weighted_gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
|
1142 |
rigor_analysis = self.analyze_course_rigor(parsed_data)
|
1143 |
service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
|
1144 |
|
1145 |
-
# Determine college tiers
|
1146 |
if weighted_gpa >= 4.3 and rigor_analysis['advanced_courses'] >= 8 and service_hours >= 100:
|
1147 |
recommendations['reach'].extend([
|
1148 |
"Ivy League: Harvard, Yale, Princeton, Columbia, etc.",
|
@@ -1190,7 +681,6 @@ class AcademicAnalyzer:
|
|
1190 |
"Technical Schools"
|
1191 |
])
|
1192 |
|
1193 |
-
# Scholarship recommendations
|
1194 |
if weighted_gpa >= 4.0:
|
1195 |
recommendations['scholarships'].extend([
|
1196 |
"National Merit Scholarship",
|
@@ -1210,7 +700,6 @@ class AcademicAnalyzer:
|
|
1210 |
"First-Generation Student Programs"
|
1211 |
])
|
1212 |
|
1213 |
-
# Improvement areas
|
1214 |
if weighted_gpa < 3.5:
|
1215 |
recommendations['improvement_areas'].append("Improve GPA through focused study and tutoring")
|
1216 |
if rigor_analysis['advanced_courses'] < 4:
|
@@ -1229,7 +718,6 @@ class AcademicAnalyzer:
|
|
1229 |
}
|
1230 |
|
1231 |
def generate_study_plan(self, parsed_data: Dict, learning_style: str) -> Dict:
|
1232 |
-
"""Generate personalized study plan based on learning style and courses"""
|
1233 |
plan = {
|
1234 |
'weekly_schedule': {},
|
1235 |
'study_strategies': [],
|
@@ -1238,19 +726,16 @@ class AcademicAnalyzer:
|
|
1238 |
}
|
1239 |
|
1240 |
try:
|
1241 |
-
# Get current courses
|
1242 |
current_courses = [
|
1243 |
course for course in parsed_data.get('course_history', [])
|
1244 |
if course.get('status', '').lower() == 'in progress'
|
1245 |
]
|
1246 |
|
1247 |
-
# Generate weekly schedule template
|
1248 |
days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
|
1249 |
for day in days:
|
1250 |
plan['weekly_schedule'][day] = []
|
1251 |
|
1252 |
-
|
1253 |
-
study_blocks = 2 # Default
|
1254 |
if learning_style.lower() == 'visual':
|
1255 |
study_blocks = 3
|
1256 |
plan['study_strategies'].extend([
|
@@ -1280,9 +765,8 @@ class AcademicAnalyzer:
|
|
1280 |
"Use hands-on activities when possible"
|
1281 |
])
|
1282 |
|
1283 |
-
# Distribute study blocks
|
1284 |
for i, course in enumerate(current_courses):
|
1285 |
-
day_index = i % 5
|
1286 |
day = days[day_index]
|
1287 |
plan['weekly_schedule'][day].append({
|
1288 |
'course': course.get('description', 'Course'),
|
@@ -1294,14 +778,12 @@ class AcademicAnalyzer:
|
|
1294 |
]
|
1295 |
})
|
1296 |
|
1297 |
-
# Add time management tips
|
1298 |
plan['time_management_tips'].extend([
|
1299 |
"Use the Pomodoro technique (25 min study, 5 min break)",
|
1300 |
"Prioritize assignments by due date and importance",
|
1301 |
"Schedule regular review sessions"
|
1302 |
])
|
1303 |
|
1304 |
-
# Add resource recommendations
|
1305 |
plan['resource_recommendations'].extend([
|
1306 |
"Khan Academy for math and science",
|
1307 |
"Quizlet for flashcards",
|
@@ -1320,7 +802,7 @@ class AcademicAnalyzer:
|
|
1320 |
# Initialize academic analyzer
|
1321 |
academic_analyzer = AcademicAnalyzer()
|
1322 |
|
1323 |
-
# ==========
|
1324 |
class DataVisualizer:
|
1325 |
def __init__(self):
|
1326 |
self.color_palette = {
|
@@ -1335,7 +817,6 @@ class DataVisualizer:
|
|
1335 |
}
|
1336 |
|
1337 |
def create_gpa_visualization(self, parsed_data: Dict):
|
1338 |
-
"""Enhanced GPA visualization with more details"""
|
1339 |
try:
|
1340 |
gpa_data = {
|
1341 |
"Type": ["Weighted GPA", "Unweighted GPA"],
|
@@ -1362,7 +843,6 @@ class DataVisualizer:
|
|
1362 |
hover_data={"Type": True, "Value": ":.2f"}
|
1363 |
)
|
1364 |
|
1365 |
-
# Add reference lines and annotations
|
1366 |
fig.add_hline(y=4.0, line_dash="dot", line_color="green", annotation_text="Excellent", annotation_position="top left")
|
1367 |
fig.add_hline(y=3.0, line_dash="dot", line_color="orange", annotation_text="Good", annotation_position="top left")
|
1368 |
fig.add_hline(y=2.0, line_dash="dot", line_color="red", annotation_text="Minimum", annotation_position="top left")
|
@@ -1389,7 +869,6 @@ class DataVisualizer:
|
|
1389 |
return None
|
1390 |
|
1391 |
def create_requirements_visualization(self, parsed_data: Dict):
|
1392 |
-
"""Enhanced requirements visualization with interactive elements"""
|
1393 |
try:
|
1394 |
req_data = []
|
1395 |
for code, req in parsed_data.get('requirements', {}).items():
|
@@ -1448,21 +927,20 @@ class DataVisualizer:
|
|
1448 |
return None
|
1449 |
|
1450 |
def create_credits_distribution_visualization(self, parsed_data: Dict):
|
1451 |
-
"""Enhanced credits distribution visualization"""
|
1452 |
try:
|
1453 |
core_credits = sum(
|
1454 |
req['completed'] for req in parsed_data.get('requirements', {}).values()
|
1455 |
-
if req and req.get('code', '').split('-')[0] in ['A', 'B', 'C', 'D']
|
1456 |
)
|
1457 |
|
1458 |
elective_credits = sum(
|
1459 |
req['completed'] for req in parsed_data.get('requirements', {}).values()
|
1460 |
-
if req and req.get('code', '').split('-')[0] in ['G', 'H']
|
1461 |
)
|
1462 |
|
1463 |
other_credits = sum(
|
1464 |
req['completed'] for req in parsed_data.get('requirements', {}).values()
|
1465 |
-
if req and req.get('code', '').split('-')[0] in ['E', 'F']
|
1466 |
)
|
1467 |
|
1468 |
credit_values = [core_credits, elective_credits, other_credits]
|
@@ -1510,7 +988,6 @@ class DataVisualizer:
|
|
1510 |
return None
|
1511 |
|
1512 |
def create_course_rigor_visualization(self, parsed_data: Dict):
|
1513 |
-
"""Visualization of course rigor analysis"""
|
1514 |
try:
|
1515 |
rigor = academic_analyzer.analyze_course_rigor(parsed_data)
|
1516 |
|
@@ -1559,7 +1036,7 @@ class DataVisualizer:
|
|
1559 |
# Initialize visualizer
|
1560 |
data_visualizer = DataVisualizer()
|
1561 |
|
1562 |
-
# ==========
|
1563 |
class EnhancedProfileManager:
|
1564 |
def __init__(self):
|
1565 |
self.profiles_dir = Path(PROFILES_DIR)
|
@@ -1581,7 +1058,6 @@ class EnhancedProfileManager:
|
|
1581 |
movie: str, movie_reason: str, show: str, show_reason: str,
|
1582 |
book: str, book_reason: str, character: str, character_reason: str,
|
1583 |
blog: str, study_plan: Dict = None) -> str:
|
1584 |
-
"""Enhanced profile saving with encryption and validation"""
|
1585 |
try:
|
1586 |
name = validate_name(name)
|
1587 |
age = validate_age(age)
|
@@ -1595,7 +1071,6 @@ class EnhancedProfileManager:
|
|
1595 |
if not learning_style or "Your primary learning style is" not in learning_style:
|
1596 |
raise ValueError("Please complete the learning style quiz first.")
|
1597 |
|
1598 |
-
# Prepare favorites with sanitization
|
1599 |
favorites = {
|
1600 |
"movie": sanitize_input(movie),
|
1601 |
"movie_reason": sanitize_input(movie_reason),
|
@@ -1607,7 +1082,6 @@ class EnhancedProfileManager:
|
|
1607 |
"character_reason": sanitize_input(character_reason)
|
1608 |
}
|
1609 |
|
1610 |
-
# Generate study plan if not provided
|
1611 |
if not study_plan:
|
1612 |
learning_style_match = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*", learning_style)
|
1613 |
if learning_style_match:
|
@@ -1615,30 +1089,27 @@ class EnhancedProfileManager:
|
|
1615 |
transcript,
|
1616 |
learning_style_match.group(1))
|
1617 |
|
1618 |
-
# Prepare data with encryption for sensitive fields
|
1619 |
data = {
|
1620 |
"name": self.encryptor.encrypt(name),
|
1621 |
"age": age,
|
1622 |
"interests": self.encryptor.encrypt(sanitize_input(interests)),
|
1623 |
-
"transcript": transcript,
|
1624 |
"learning_style": learning_style,
|
1625 |
"favorites": favorites,
|
1626 |
"blog": self.encryptor.encrypt(sanitize_input(blog)) if blog else "",
|
1627 |
"study_plan": study_plan if study_plan else {},
|
1628 |
"session_token": self.current_session,
|
1629 |
"last_updated": time.time(),
|
1630 |
-
"version": "2.0"
|
1631 |
}
|
1632 |
|
1633 |
filepath = self.get_profile_path(name)
|
1634 |
|
1635 |
-
# Save with atomic write
|
1636 |
temp_path = filepath.with_suffix('.tmp')
|
1637 |
with open(temp_path, "w", encoding='utf-8') as f:
|
1638 |
json.dump(data, f, indent=2, ensure_ascii=False)
|
1639 |
-
temp_path.replace(filepath)
|
1640 |
|
1641 |
-
# Optional cloud backup
|
1642 |
if HF_TOKEN and hf_api:
|
1643 |
try:
|
1644 |
hf_api.upload_file(
|
@@ -1658,7 +1129,6 @@ class EnhancedProfileManager:
|
|
1658 |
raise gr.Error(f"Couldn't save profile: {str(e)}")
|
1659 |
|
1660 |
def load_profile(self, name: str = None, session_token: str = None) -> Dict:
|
1661 |
-
"""Enhanced profile loading with decryption and retries"""
|
1662 |
for attempt in range(MAX_PROFILE_LOAD_ATTEMPTS):
|
1663 |
try:
|
1664 |
if session_token:
|
@@ -1673,7 +1143,6 @@ class EnhancedProfileManager:
|
|
1673 |
if name:
|
1674 |
profile_file = self.get_profile_path(name)
|
1675 |
if not profile_file.exists():
|
1676 |
-
# Try to download from Hugging Face Hub
|
1677 |
if HF_TOKEN and hf_api:
|
1678 |
try:
|
1679 |
hf_api.download_file(
|
@@ -1688,18 +1157,15 @@ class EnhancedProfileManager:
|
|
1688 |
else:
|
1689 |
raise gr.Error(f"No profile found for {name}")
|
1690 |
else:
|
1691 |
-
# Load most recently modified profile
|
1692 |
profiles.sort(key=lambda x: x.stat().st_mtime, reverse=True)
|
1693 |
profile_file = profiles[0]
|
1694 |
|
1695 |
with open(profile_file, "r", encoding='utf-8') as f:
|
1696 |
profile_data = json.load(f)
|
1697 |
|
1698 |
-
# Check session timeout
|
1699 |
if time.time() - profile_data.get('last_updated', 0) > SESSION_TIMEOUT:
|
1700 |
raise gr.Error("Session expired. Please start a new session.")
|
1701 |
|
1702 |
-
# Decrypt encrypted fields
|
1703 |
if profile_data.get('version', '1.0') == '2.0':
|
1704 |
try:
|
1705 |
profile_data['name'] = self.encryptor.decrypt(profile_data['name'])
|
@@ -1723,7 +1189,6 @@ class EnhancedProfileManager:
|
|
1723 |
time.sleep(0.5 * (attempt + 1))
|
1724 |
|
1725 |
def list_profiles(self, session_token: str = None) -> List[str]:
|
1726 |
-
"""List available profiles with decrypted names"""
|
1727 |
if session_token:
|
1728 |
profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json"))
|
1729 |
else:
|
@@ -1748,22 +1213,18 @@ class EnhancedProfileManager:
|
|
1748 |
return profile_names
|
1749 |
|
1750 |
def delete_profile(self, name: str, session_token: str = None) -> bool:
|
1751 |
-
"""Delete a profile with verification"""
|
1752 |
try:
|
1753 |
profile_file = self.get_profile_path(name)
|
1754 |
if not profile_file.exists():
|
1755 |
return False
|
1756 |
|
1757 |
-
# Verify the profile belongs to the current session
|
1758 |
with open(profile_file, "r", encoding='utf-8') as f:
|
1759 |
data = json.load(f)
|
1760 |
if session_token and data.get('session_token') != session_token:
|
1761 |
return False
|
1762 |
|
1763 |
-
# Delete local file
|
1764 |
profile_file.unlink()
|
1765 |
|
1766 |
-
# Try to delete from Hugging Face Hub
|
1767 |
if HF_TOKEN and hf_api:
|
1768 |
try:
|
1769 |
hf_api.delete_file(
|
@@ -1779,10 +1240,10 @@ class EnhancedProfileManager:
|
|
1779 |
logger.error(f"Error deleting profile: {str(e)}")
|
1780 |
return False
|
1781 |
|
1782 |
-
# Initialize
|
1783 |
profile_manager = EnhancedProfileManager()
|
1784 |
|
1785 |
-
# ==========
|
1786 |
class EnhancedTeachingAssistant:
|
1787 |
def __init__(self):
|
1788 |
self.context_history = []
|
@@ -1791,14 +1252,12 @@ class EnhancedTeachingAssistant:
|
|
1791 |
self.last_model_load_attempt = 0
|
1792 |
|
1793 |
async def initialize_model(self):
|
1794 |
-
"""Lazy initialize the model with retries"""
|
1795 |
if not self.model or not self.tokenizer:
|
1796 |
-
if time.time() - self.last_model_load_attempt > 3600:
|
1797 |
self.model, self.tokenizer = get_model_and_tokenizer()
|
1798 |
self.last_model_load_attempt = time.time()
|
1799 |
|
1800 |
async def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str:
|
1801 |
-
"""Enhanced response generation with context awareness"""
|
1802 |
try:
|
1803 |
await self.initialize_model()
|
1804 |
|
@@ -1808,28 +1267,24 @@ class EnhancedTeachingAssistant:
|
|
1808 |
|
1809 |
self._update_context(message, history)
|
1810 |
|
1811 |
-
# Get relevant profile information
|
1812 |
student_name = profile.get('name', 'Student')
|
1813 |
gpa = profile.get('transcript', {}).get('student_info', {}).get('weighted_gpa', None)
|
1814 |
learning_style = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*",
|
1815 |
profile.get('learning_style', ''))
|
1816 |
learning_style = learning_style.group(1) if learning_style else None
|
1817 |
|
1818 |
-
# Prepare context for the model
|
1819 |
context = f"You are an AI teaching assistant helping {student_name}. "
|
1820 |
if gpa:
|
1821 |
context += f"{student_name}'s current weighted GPA is {gpa}. "
|
1822 |
if learning_style:
|
1823 |
context += f"They are a {learning_style.lower()} learner. "
|
1824 |
|
1825 |
-
# Add recent conversation history
|
1826 |
if self.context_history:
|
1827 |
context += "Recent conversation:\n"
|
1828 |
for item in self.context_history[-self.max_context_length:]:
|
1829 |
role = "Student" if item['role'] == 'user' else "Assistant"
|
1830 |
context += f"{role}: {item['content']}\n"
|
1831 |
|
1832 |
-
# Generate response based on query type
|
1833 |
query_type = self._classify_query(message)
|
1834 |
response = await self._generate_typed_response(query_type, message, context, profile)
|
1835 |
|
@@ -1840,7 +1295,6 @@ class EnhancedTeachingAssistant:
|
|
1840 |
return "I encountered an error processing your request. Please try again."
|
1841 |
|
1842 |
def _classify_query(self, message: str) -> str:
|
1843 |
-
"""Classify the type of user query"""
|
1844 |
message_lower = message.lower()
|
1845 |
|
1846 |
if any(word in message_lower for word in ['gpa', 'grade', 'average']):
|
@@ -1859,7 +1313,6 @@ class EnhancedTeachingAssistant:
|
|
1859 |
return 'general'
|
1860 |
|
1861 |
async def _generate_typed_response(self, query_type: str, message: str, context: str, profile: Dict) -> str:
|
1862 |
-
"""Generate response based on query type"""
|
1863 |
if query_type == 'gpa':
|
1864 |
return self._generate_gpa_response(profile)
|
1865 |
elif query_type == 'study':
|
@@ -1876,7 +1329,6 @@ class EnhancedTeachingAssistant:
|
|
1876 |
return await self._generate_general_response(message, context)
|
1877 |
|
1878 |
def _generate_gpa_response(self, profile: Dict) -> str:
|
1879 |
-
"""Generate response about GPA"""
|
1880 |
gpa = profile.get('transcript', {}).get('student_info', {}).get('weighted_gpa', None)
|
1881 |
if not gpa:
|
1882 |
return "I couldn't find your GPA information. Please upload your transcript first."
|
@@ -1902,7 +1354,6 @@ class EnhancedTeachingAssistant:
|
|
1902 |
return "\n\n".join(response)
|
1903 |
|
1904 |
def _generate_study_response(self, profile: Dict) -> str:
|
1905 |
-
"""Generate study advice based on learning style"""
|
1906 |
learning_style_match = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*",
|
1907 |
profile.get('learning_style', ''))
|
1908 |
if not learning_style_match:
|
@@ -1918,7 +1369,6 @@ class EnhancedTeachingAssistant:
|
|
1918 |
if study_plan.get('study_strategies'):
|
1919 |
response.extend([f"- {strategy}" for strategy in study_plan['study_strategies']])
|
1920 |
else:
|
1921 |
-
# Fallback if no study plan
|
1922 |
if learning_style.lower() == 'visual':
|
1923 |
response.extend([
|
1924 |
"- Use color coding in your notes",
|
@@ -1951,18 +1401,15 @@ class EnhancedTeachingAssistant:
|
|
1951 |
return "\n\n".join(response)
|
1952 |
|
1953 |
def _generate_courses_response(self, profile: Dict) -> str:
|
1954 |
-
"""Generate response about current/past courses"""
|
1955 |
transcript = profile.get('transcript', {})
|
1956 |
if not transcript.get('course_history'):
|
1957 |
return "I couldn't find your course information. Please upload your transcript first."
|
1958 |
|
1959 |
-
# Get current courses (in progress)
|
1960 |
current_courses = [
|
1961 |
course for course in transcript['course_history']
|
1962 |
if course.get('status', '').lower() == 'in progress'
|
1963 |
]
|
1964 |
|
1965 |
-
# Get past completed courses
|
1966 |
completed_courses = [
|
1967 |
course for course in transcript['course_history']
|
1968 |
if course.get('status', '').lower() == 'completed'
|
@@ -1972,7 +1419,7 @@ class EnhancedTeachingAssistant:
|
|
1972 |
|
1973 |
if current_courses:
|
1974 |
response.append("**Your Current Courses:**")
|
1975 |
-
for course in current_courses[:5]:
|
1976 |
response.append(
|
1977 |
f"- {course.get('description', 'Unknown')} "
|
1978 |
f"({course.get('course_code', '')})"
|
@@ -1982,7 +1429,7 @@ class EnhancedTeachingAssistant:
|
|
1982 |
|
1983 |
if completed_courses:
|
1984 |
response.append("\n**Recently Completed Courses:**")
|
1985 |
-
for course in completed_courses[:5]:
|
1986 |
grade = course.get('grade_earned', '')
|
1987 |
if grade:
|
1988 |
response.append(
|
@@ -1992,7 +1439,6 @@ class EnhancedTeachingAssistant:
|
|
1992 |
else:
|
1993 |
response.append(f"- {course.get('description', 'Unknown')}")
|
1994 |
|
1995 |
-
# Add rigor analysis
|
1996 |
rigor = academic_analyzer.analyze_course_rigor(transcript)
|
1997 |
if rigor['rating']:
|
1998 |
response.append(f"\n**Course Rigor Analysis:** {rigor['rating']}")
|
@@ -2003,7 +1449,6 @@ class EnhancedTeachingAssistant:
|
|
2003 |
return "\n".join(response)
|
2004 |
|
2005 |
def _generate_college_response(self, profile: Dict) -> str:
|
2006 |
-
"""Generate college recommendations"""
|
2007 |
recommendations = academic_analyzer.generate_college_recommendations(profile.get('transcript', {}))
|
2008 |
|
2009 |
response = ["**College Recommendations Based on Your Profile:**"]
|
@@ -2031,7 +1476,6 @@ class EnhancedTeachingAssistant:
|
|
2031 |
return "\n".join(response)
|
2032 |
|
2033 |
def _generate_planning_response(self, profile: Dict) -> str:
|
2034 |
-
"""Generate study/schedule planning advice"""
|
2035 |
study_plan = profile.get('study_plan', {})
|
2036 |
|
2037 |
response = ["**Study Planning Advice:**"]
|
@@ -2041,7 +1485,7 @@ class EnhancedTeachingAssistant:
|
|
2041 |
for day, activities in study_plan['weekly_schedule'].items():
|
2042 |
if activities:
|
2043 |
response.append(f"\n**{day}:**")
|
2044 |
-
for activity in activities[:2]:
|
2045 |
response.append(
|
2046 |
f"- {activity.get('course', 'Course')}: "
|
2047 |
f"{activity.get('duration', '45-60 minutes')}"
|
@@ -2059,23 +1503,20 @@ class EnhancedTeachingAssistant:
|
|
2059 |
return "\n".join(response)
|
2060 |
|
2061 |
def _generate_resources_response(self, profile: Dict) -> str:
|
2062 |
-
"""Generate resource recommendations"""
|
2063 |
study_plan = profile.get('study_plan', {})
|
2064 |
transcript = profile.get('transcript', {})
|
2065 |
|
2066 |
response = ["**Recommended Learning Resources:**"]
|
2067 |
|
2068 |
-
# General resources
|
2069 |
if study_plan.get('resource_recommendations'):
|
2070 |
response.extend([f"- {resource}" for resource in study_plan['resource_recommendations'][:3]])
|
2071 |
else:
|
2072 |
response.extend([
|
2073 |
-
"- Khan Academy
|
2074 |
-
"- Quizlet
|
2075 |
"- Wolfram Alpha for math help"
|
2076 |
])
|
2077 |
|
2078 |
-
# Subject-specific resources
|
2079 |
current_courses = [
|
2080 |
course for course in transcript.get('course_history', [])
|
2081 |
if course.get('status', '').lower() == 'in progress'
|
@@ -2083,7 +1524,7 @@ class EnhancedTeachingAssistant:
|
|
2083 |
|
2084 |
if current_courses:
|
2085 |
response.append("\n**Course-Specific Resources:**")
|
2086 |
-
for course in current_courses[:2]:
|
2087 |
course_name = course.get('description', 'your course')
|
2088 |
if 'MATH' in course_name.upper():
|
2089 |
response.append(f"- For {course_name}: Desmos Graphing Calculator, Art of Problem Solving")
|
@@ -2095,7 +1536,6 @@ class EnhancedTeachingAssistant:
|
|
2095 |
return "\n".join(response)
|
2096 |
|
2097 |
async def _generate_general_response(self, message: str, context: str) -> str:
|
2098 |
-
"""Generate response using the language model"""
|
2099 |
if not self.model or not self.tokenizer:
|
2100 |
return "I'm still loading my knowledge base. Please try again in a moment."
|
2101 |
|
@@ -2104,7 +1544,6 @@ class EnhancedTeachingAssistant:
|
|
2104 |
|
2105 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
2106 |
|
2107 |
-
# Generate response with more controlled parameters
|
2108 |
outputs = self.model.generate(
|
2109 |
**inputs,
|
2110 |
max_new_tokens=200,
|
@@ -2116,10 +1555,8 @@ class EnhancedTeachingAssistant:
|
|
2116 |
|
2117 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
2118 |
|
2119 |
-
# Extract just the assistant's response
|
2120 |
response = response[len(prompt):].strip()
|
2121 |
|
2122 |
-
# Clean up any incomplete sentences
|
2123 |
if response and response[-1] not in {'.', '!', '?'}:
|
2124 |
last_period = response.rfind('.')
|
2125 |
if last_period > 0:
|
@@ -2131,7 +1568,6 @@ class EnhancedTeachingAssistant:
|
|
2131 |
return "I encountered an error generating a response. Please try again."
|
2132 |
|
2133 |
def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None:
|
2134 |
-
"""Update conversation context"""
|
2135 |
self.context_history.append({"role": "user", "content": message})
|
2136 |
|
2137 |
if history:
|
@@ -2141,290 +1577,97 @@ class EnhancedTeachingAssistant:
|
|
2141 |
if h[1]:
|
2142 |
self.context_history.append({"role": "assistant", "content": h[1]})
|
2143 |
|
2144 |
-
# Trim to max context length
|
2145 |
self.context_history = self.context_history[-(self.max_context_length * 2):]
|
2146 |
|
2147 |
-
# Initialize
|
2148 |
teaching_assistant = EnhancedTeachingAssistant()
|
2149 |
|
2150 |
-
# ==========
|
2151 |
-
class
|
2152 |
-
def __init__(self):
|
2153 |
-
self.
|
2154 |
|
2155 |
-
def
|
2156 |
-
|
2157 |
-
try:
|
2158 |
-
if not start_date:
|
2159 |
-
start_date = datetime.date.today().isoformat()
|
2160 |
-
|
2161 |
-
start_date = datetime.date.fromisoformat(start_date)
|
2162 |
-
study_plan = profile.get('study_plan', {})
|
2163 |
-
|
2164 |
-
calendar = {
|
2165 |
-
'start_date': start_date.isoformat(),
|
2166 |
-
'end_date': (start_date + datetime.timedelta(weeks=weeks)).isoformat(),
|
2167 |
-
'events': [],
|
2168 |
-
'exams': [],
|
2169 |
-
'assignments': []
|
2170 |
-
}
|
2171 |
-
|
2172 |
-
# Add study sessions from the study plan
|
2173 |
-
if study_plan.get('weekly_schedule'):
|
2174 |
-
for day_offset in range(weeks * 7):
|
2175 |
-
current_date = start_date + datetime.timedelta(days=day_offset)
|
2176 |
-
day_name = calendar.day_name[current_date.weekday()]
|
2177 |
-
|
2178 |
-
if day_name in study_plan['weekly_schedule']:
|
2179 |
-
for session in study_plan['weekly_schedule'][day_name]:
|
2180 |
-
calendar['events'].append({
|
2181 |
-
'date': current_date.isoformat(),
|
2182 |
-
'title': f"Study {session.get('course', '')}",
|
2183 |
-
'description': "\n".join(session.get('activities', [])),
|
2184 |
-
'duration': session.get('duration', '45-60 minutes'),
|
2185 |
-
'type': 'study'
|
2186 |
-
})
|
2187 |
-
|
2188 |
-
# Add exam dates from transcript (if available)
|
2189 |
-
transcript = profile.get('transcript', {})
|
2190 |
-
if transcript.get('course_history'):
|
2191 |
-
for course in transcript['course_history']:
|
2192 |
-
if course.get('status', '').lower() == 'in progress':
|
2193 |
-
# Simulate some exam dates (in a real app, these would come from the school calendar)
|
2194 |
-
midterm_date = (start_date + datetime.timedelta(weeks=2)).isoformat()
|
2195 |
-
final_date = (start_date + datetime.timedelta(weeks=weeks - 1)).isoformat()
|
2196 |
-
|
2197 |
-
calendar['exams'].append({
|
2198 |
-
'date': midterm_date,
|
2199 |
-
'title': f"{course.get('description', 'Course')} Midterm",
|
2200 |
-
'course': course.get('description', ''),
|
2201 |
-
'type': 'exam'
|
2202 |
-
})
|
2203 |
-
|
2204 |
-
calendar['exams'].append({
|
2205 |
-
'date': final_date,
|
2206 |
-
'title': f"{course.get('description', 'Course')} Final",
|
2207 |
-
'course': course.get('description', ''),
|
2208 |
-
'type': 'exam'
|
2209 |
-
})
|
2210 |
-
|
2211 |
-
return calendar
|
2212 |
-
except Exception as e:
|
2213 |
-
logger.error(f"Error generating calendar: {str(e)}")
|
2214 |
-
return {
|
2215 |
-
'start_date': datetime.date.today().isoformat(),
|
2216 |
-
'end_date': (datetime.date.today() + datetime.timedelta(weeks=4)).isoformat(),
|
2217 |
-
'events': [],
|
2218 |
-
'exams': [],
|
2219 |
-
'assignments': []
|
2220 |
-
}
|
2221 |
|
2222 |
-
def
|
2223 |
-
|
2224 |
-
try:
|
2225 |
-
import matplotlib.pyplot as plt
|
2226 |
-
from matplotlib.patches import Rectangle
|
2227 |
-
|
2228 |
-
# Prepare data
|
2229 |
-
start_date = datetime.date.fromisoformat(calendar_data['start_date'])
|
2230 |
-
end_date = datetime.date.fromisoformat(calendar_data['end_date'])
|
2231 |
-
days = (end_date - start_date).days + 1
|
2232 |
-
|
2233 |
-
# Create figure
|
2234 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
2235 |
-
|
2236 |
-
# Draw week grid
|
2237 |
-
for i in range(0, days, 7):
|
2238 |
-
ax.add_patch(Rectangle((i, 0), 7, 1, color='#f5f5f5'))
|
2239 |
-
|
2240 |
-
# Add study events
|
2241 |
-
for event in calendar_data['events']:
|
2242 |
-
event_date = datetime.date.fromisoformat(event['date'])
|
2243 |
-
day_offset = (event_date - start_date).days
|
2244 |
-
ax.add_patch(Rectangle((day_offset, 0.7), 1, 0.3, color='#4CAF50'))
|
2245 |
-
|
2246 |
-
# Add exams
|
2247 |
-
for exam in calendar_data['exams']:
|
2248 |
-
exam_date = datetime.date.fromisoformat(exam['date'])
|
2249 |
-
day_offset = (exam_date - start_date).days
|
2250 |
-
ax.add_patch(Rectangle((day_offset, 0.3), 1, 0.3, color='#F44336'))
|
2251 |
-
|
2252 |
-
# Configure axes
|
2253 |
-
ax.set_xlim(0, days)
|
2254 |
-
ax.set_ylim(0, 1)
|
2255 |
-
ax.set_xticks(range(0, days, 7))
|
2256 |
-
ax.set_xticklabels([(start_date + datetime.timedelta(days=x)).strftime('%b %d')
|
2257 |
-
for x in range(0, days, 7)])
|
2258 |
-
ax.set_yticks([0.5])
|
2259 |
-
ax.set_yticklabels(['Study Calendar'])
|
2260 |
-
|
2261 |
-
# Add legend
|
2262 |
-
ax.add_patch(Rectangle((days-5, 0.7), 1, 0.3, color='#4CAF50'))
|
2263 |
-
ax.text(days-3.5, 0.85, 'Study Sessions', va='center')
|
2264 |
-
ax.add_patch(Rectangle((days-5, 0.3), 1, 0.3, color='#F44336'))
|
2265 |
-
ax.text(days-3.5, 0.45, 'Exams', va='center')
|
2266 |
-
|
2267 |
-
plt.title(f"Study Calendar: {start_date.strftime('%b %d')} to {end_date.strftime('%b %d')}")
|
2268 |
-
plt.tight_layout()
|
2269 |
-
|
2270 |
-
return fig
|
2271 |
-
except Exception as e:
|
2272 |
-
logger.error(f"Error creating calendar visualization: {str(e)}")
|
2273 |
-
return None
|
2274 |
|
2275 |
-
|
2276 |
-
study_calendar = StudyCalendar()
|
2277 |
|
2278 |
-
|
2279 |
-
|
2280 |
-
|
2281 |
-
|
2282 |
-
|
2283 |
-
|
2284 |
-
|
2285 |
-
|
2286 |
-
|
2287 |
-
|
2288 |
-
|
2289 |
-
|
2290 |
-
|
2291 |
-
|
2292 |
-
|
2293 |
-
|
2294 |
-
|
2295 |
-
|
2296 |
-
|
2297 |
-
|
2298 |
-
|
2299 |
-
|
2300 |
-
|
2301 |
-
|
2302 |
-
|
2303 |
-
|
2304 |
-
|
2305 |
-
|
2306 |
-
|
2307 |
-
|
2308 |
-
|
2309 |
-
|
2310 |
-
|
2311 |
-
|
2312 |
-
'date': time.time(),
|
2313 |
-
'value': progress_value,
|
2314 |
-
'notes': notes
|
2315 |
-
})
|
2316 |
-
|
2317 |
-
# Check if goal is completed
|
2318 |
-
if self.goals[goal_id].get('target_value') is not None:
|
2319 |
-
if progress_value >= self.goals[goal_id]['target_value']:
|
2320 |
-
self.goals[goal_id]['completed'] = True
|
2321 |
-
|
2322 |
-
return True
|
2323 |
-
except Exception as e:
|
2324 |
-
logger.error(f"Error updating goal: {str(e)}")
|
2325 |
-
return False
|
2326 |
|
2327 |
-
|
2328 |
-
|
2329 |
-
|
2330 |
-
{**goal, 'id': goal_id}
|
2331 |
-
for goal_id, goal in self.goals.items()
|
2332 |
-
if goal['profile_name'] == profile_name
|
2333 |
-
]
|
2334 |
|
2335 |
-
|
2336 |
-
|
2337 |
-
|
2338 |
-
import matplotlib.pyplot as plt
|
2339 |
-
|
2340 |
-
if not goals:
|
2341 |
-
return None
|
2342 |
-
|
2343 |
-
# Prepare data
|
2344 |
-
goal_names = [goal['description'][:20] + ('...' if len(goal['description']) > 20 else '')
|
2345 |
-
for goal in goals]
|
2346 |
-
progress_values = [
|
2347 |
-
goal['progress'][-1]['value'] if goal['progress'] else 0
|
2348 |
-
for goal in goals
|
2349 |
-
]
|
2350 |
-
target_values = [
|
2351 |
-
goal['target_value'] if goal['target_value'] is not None else progress_values[i]
|
2352 |
-
for i, goal in enumerate(goals)
|
2353 |
-
]
|
2354 |
-
|
2355 |
-
# Create figure
|
2356 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
2357 |
-
|
2358 |
-
# Plot bars
|
2359 |
-
x = range(len(goals))
|
2360 |
-
bar_width = 0.35
|
2361 |
-
|
2362 |
-
progress_bars = ax.bar(
|
2363 |
-
[i - bar_width/2 for i in x],
|
2364 |
-
progress_values,
|
2365 |
-
bar_width,
|
2366 |
-
label='Current Progress',
|
2367 |
-
color='#4CAF50'
|
2368 |
-
)
|
2369 |
-
|
2370 |
-
target_bars = ax.bar(
|
2371 |
-
[i + bar_width/2 for i in x],
|
2372 |
-
target_values,
|
2373 |
-
bar_width,
|
2374 |
-
label='Target',
|
2375 |
-
color='#2196F3'
|
2376 |
-
)
|
2377 |
-
|
2378 |
-
# Add labels and title
|
2379 |
-
ax.set_xlabel('Goals')
|
2380 |
-
ax.set_ylabel('Progress')
|
2381 |
-
ax.set_title('Goal Progress Tracking')
|
2382 |
-
ax.set_xticks(x)
|
2383 |
-
ax.set_xticklabels(goal_names, rotation=45, ha='right')
|
2384 |
-
ax.legend()
|
2385 |
-
|
2386 |
-
# Add value labels
|
2387 |
-
for bar in progress_bars:
|
2388 |
-
height = bar.get_height()
|
2389 |
-
ax.annotate(f'{height:.1f}',
|
2390 |
-
xy=(bar.get_x() + bar.get_width() / 2, height),
|
2391 |
-
xytext=(0, 3),
|
2392 |
-
textcoords="offset points",
|
2393 |
-
ha='center', va='bottom')
|
2394 |
-
|
2395 |
-
for bar in target_bars:
|
2396 |
-
height = bar.get_height()
|
2397 |
-
ax.annotate(f'{height:.1f}',
|
2398 |
-
xy=(bar.get_x() + bar.get_width() / 2, height),
|
2399 |
-
xytext=(0, 3),
|
2400 |
-
textcoords="offset points",
|
2401 |
-
ha='center', va='bottom')
|
2402 |
-
|
2403 |
-
plt.tight_layout()
|
2404 |
-
return fig
|
2405 |
-
except Exception as e:
|
2406 |
-
logger.error(f"Error creating goal visualization: {str(e)}")
|
2407 |
-
return None
|
2408 |
|
2409 |
-
|
2410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2411 |
|
2412 |
-
# ==========
|
2413 |
def create_enhanced_interface():
|
2414 |
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
|
2415 |
session_token = gr.State(value=generate_session_token())
|
2416 |
profile_manager.set_session(session_token.value)
|
2417 |
|
2418 |
tab_completed = gr.State({
|
2419 |
-
0: False,
|
2420 |
-
1: False,
|
2421 |
-
2: False,
|
2422 |
-
3: False,
|
2423 |
-
4: False,
|
2424 |
-
5: False
|
2425 |
})
|
2426 |
|
2427 |
-
# Custom CSS with enhanced styling
|
2428 |
app.css = """
|
2429 |
.gradio-container {
|
2430 |
max-width: 1200px !important;
|
@@ -2537,7 +1780,6 @@ def create_enhanced_interface():
|
|
2537 |
border-left: 4px solid #2196F3;
|
2538 |
}
|
2539 |
|
2540 |
-
/* Dark mode styles */
|
2541 |
.dark .tab-content {
|
2542 |
background-color: #2d2d2d !important;
|
2543 |
border-color: #444 !important;
|
@@ -2579,7 +1821,6 @@ def create_enhanced_interface():
|
|
2579 |
}
|
2580 |
"""
|
2581 |
|
2582 |
-
# Header with improved layout
|
2583 |
with gr.Row():
|
2584 |
with gr.Column(scale=4):
|
2585 |
gr.Markdown("""
|
@@ -2590,7 +1831,6 @@ def create_enhanced_interface():
|
|
2590 |
with gr.Column(scale=1):
|
2591 |
dark_mode = gr.Checkbox(label="Dark Mode", value=False)
|
2592 |
|
2593 |
-
# Navigation buttons with icons
|
2594 |
with gr.Row():
|
2595 |
with gr.Column(scale=1, min_width=100):
|
2596 |
step1 = gr.Button("π 1. Transcript", elem_classes="incomplete-tab")
|
@@ -2607,9 +1847,7 @@ def create_enhanced_interface():
|
|
2607 |
|
2608 |
nav_message = gr.HTML(visible=False)
|
2609 |
|
2610 |
-
# Main tabs
|
2611 |
with gr.Tabs(visible=True) as tabs:
|
2612 |
-
# ===== TAB 1: TRANSCRIPT UPLOAD =====
|
2613 |
with gr.Tab("Transcript", id=0):
|
2614 |
with gr.Row():
|
2615 |
with gr.Column(scale=1):
|
@@ -2650,15 +1888,12 @@ def create_enhanced_interface():
|
|
2650 |
|
2651 |
def process_and_visualize(file_obj, tab_status):
|
2652 |
try:
|
2653 |
-
|
2654 |
-
parsed_data = transcript_parser.parse_transcript(file_obj.name, os.path.splitext(file_obj.name)[1].lower())
|
2655 |
|
2656 |
-
# Generate analyses
|
2657 |
gpa_analysis = academic_analyzer.analyze_gpa(parsed_data)
|
2658 |
grad_status = academic_analyzer.analyze_graduation_status(parsed_data)
|
2659 |
college_recs = academic_analyzer.generate_college_recommendations(parsed_data)
|
2660 |
|
2661 |
-
# Format results
|
2662 |
results = [
|
2663 |
f"## π GPA Analysis",
|
2664 |
f"**Rating:** {gpa_analysis['rating']}",
|
@@ -2688,7 +1923,6 @@ def create_enhanced_interface():
|
|
2688 |
results.append("\n**Improvement Tips:**")
|
2689 |
results.extend([f"- {tip}" for tip in gpa_analysis['improvement_tips']])
|
2690 |
|
2691 |
-
# Update visualizations
|
2692 |
viz_updates = [
|
2693 |
gr.update(visible=data_visualizer.create_gpa_visualization(parsed_data) is not None),
|
2694 |
gr.update(visible=data_visualizer.create_requirements_visualization(parsed_data) is not None),
|
@@ -2696,7 +1930,6 @@ def create_enhanced_interface():
|
|
2696 |
gr.update(visible=data_visualizer.create_course_rigor_visualization(parsed_data) is not None)
|
2697 |
]
|
2698 |
|
2699 |
-
# Update tab completion status
|
2700 |
tab_status[0] = True
|
2701 |
|
2702 |
return "\n".join(results), parsed_data, *viz_updates, tab_status
|
@@ -2717,7 +1950,6 @@ def create_enhanced_interface():
|
|
2717 |
outputs=step2
|
2718 |
)
|
2719 |
|
2720 |
-
# ===== TAB 2: LEARNING STYLE QUIZ =====
|
2721 |
with gr.Tab("Learning Style Quiz", id=1):
|
2722 |
with gr.Column():
|
2723 |
gr.Markdown("### π Step 2: Discover Your Learning Style")
|
@@ -2783,7 +2015,6 @@ def create_enhanced_interface():
|
|
2783 |
outputs=progress
|
2784 |
)
|
2785 |
|
2786 |
-
# ===== TAB 3: PERSONAL QUESTIONS =====
|
2787 |
with gr.Tab("Personal Profile", id=2):
|
2788 |
with gr.Row():
|
2789 |
with gr.Column(scale=1):
|
@@ -2829,7 +2060,6 @@ def create_enhanced_interface():
|
|
2829 |
outputs=[tab_completed, step3, step4, save_confirmation]
|
2830 |
)
|
2831 |
|
2832 |
-
# ===== TAB 4: SAVE & REVIEW =====
|
2833 |
with gr.Tab("Save Profile", id=3):
|
2834 |
with gr.Row():
|
2835 |
with gr.Column(scale=1):
|
@@ -2929,12 +2159,10 @@ def create_enhanced_interface():
|
|
2929 |
]
|
2930 |
)
|
2931 |
|
2932 |
-
# ===== TAB 5: AI ASSISTANT =====
|
2933 |
with gr.Tab("AI Assistant", id=4):
|
2934 |
gr.Markdown("## π¬ Your Personalized Learning Assistant")
|
2935 |
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
|
2936 |
|
2937 |
-
# Create custom chatbot interface
|
2938 |
chatbot = gr.Chatbot(height=500)
|
2939 |
msg = gr.Textbox(label="Your Message")
|
2940 |
clear = gr.Button("Clear")
|
@@ -2947,7 +2175,6 @@ def create_enhanced_interface():
|
|
2947 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
2948 |
clear.click(lambda: None, None, chatbot, queue=False)
|
2949 |
|
2950 |
-
# ===== TAB 6: GOALS & PLANNING =====
|
2951 |
with gr.Tab("Goals & Planning", id=5):
|
2952 |
with gr.Row():
|
2953 |
with gr.Column(scale=1):
|
@@ -2976,7 +2203,6 @@ def create_enhanced_interface():
|
|
2976 |
calendar_output = gr.HTML()
|
2977 |
calendar_viz = gr.Plot(label="Calendar Visualization", visible=False)
|
2978 |
|
2979 |
-
# Show/hide target value based on goal type
|
2980 |
goal_type.change(
|
2981 |
fn=lambda gt: gr.update(visible=gt in ["GPA Improvement", "Test Score"]),
|
2982 |
inputs=goal_type,
|
@@ -3029,7 +2255,6 @@ def create_enhanced_interface():
|
|
3029 |
|
3030 |
calendar = study_calendar.generate_study_calendar(profile, start_date.isoformat())
|
3031 |
|
3032 |
-
# Create HTML display
|
3033 |
calendar_html = []
|
3034 |
current_date = datetime.date.fromisoformat(calendar['start_date'])
|
3035 |
end_date = datetime.date.fromisoformat(calendar['end_date'])
|
@@ -3073,7 +2298,6 @@ def create_enhanced_interface():
|
|
3073 |
gr.update(visible=study_calendar.create_calendar_visualization(calendar) is not None)
|
3074 |
)
|
3075 |
|
3076 |
-
# Add goal functionality
|
3077 |
add_goal_btn.click(
|
3078 |
fn=lambda gt, desc, date, val: (
|
3079 |
goal_tracker.add_goal(name.value, gt, desc, date, val),
|
@@ -3091,16 +2315,13 @@ def create_enhanced_interface():
|
|
3091 |
outputs=[goals_output, goal_viz]
|
3092 |
)
|
3093 |
|
3094 |
-
# Generate calendar functionality
|
3095 |
generate_calendar_btn.click(
|
3096 |
fn=lambda date: update_calendar_display(name.value, date),
|
3097 |
inputs=calendar_start_date,
|
3098 |
outputs=[calendar_output, calendar_viz]
|
3099 |
)
|
3100 |
|
3101 |
-
# Navigation logic
|
3102 |
def navigate_to_tab(tab_index: int, tab_completed_status: dict):
|
3103 |
-
# Check if all previous tabs are completed
|
3104 |
for i in range(tab_index):
|
3105 |
if not tab_completed_status.get(i, False):
|
3106 |
messages = [
|
@@ -3111,7 +2332,7 @@ def create_enhanced_interface():
|
|
3111 |
"Please complete the previous steps first"
|
3112 |
]
|
3113 |
return (
|
3114 |
-
gr.Tabs(selected=i),
|
3115 |
gr.update(
|
3116 |
value=f"<div class='error-message'>β {messages[i]}</div>",
|
3117 |
visible=True
|
@@ -3151,7 +2372,6 @@ def create_enhanced_interface():
|
|
3151 |
outputs=[tabs, nav_message]
|
3152 |
)
|
3153 |
|
3154 |
-
# Dark mode toggle
|
3155 |
def toggle_dark_mode(dark):
|
3156 |
return gr.themes.Soft(primary_hue="blue", secondary_hue="gray") if not dark else gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate")
|
3157 |
|
@@ -3161,7 +2381,6 @@ def create_enhanced_interface():
|
|
3161 |
outputs=None
|
3162 |
)
|
3163 |
|
3164 |
-
# Load model on startup
|
3165 |
app.load(fn=lambda: model_loader.load_model(), outputs=[])
|
3166 |
|
3167 |
return app
|
|
|
38 |
# Enhanced Configuration
|
39 |
PROFILES_DIR = "student_profiles"
|
40 |
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
|
41 |
+
MAX_FILE_SIZE_MB = 10
|
42 |
MIN_AGE = 5
|
43 |
MAX_AGE = 120
|
44 |
SESSION_TOKEN_LENGTH = 32
|
45 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
46 |
ENCRYPTION_KEY = os.getenv("ENCRYPTION_KEY", Fernet.generate_key().decode())
|
47 |
+
SESSION_TIMEOUT = 3600 * 3
|
48 |
MAX_CONTEXT_HISTORY = 10
|
49 |
MAX_PROFILE_LOAD_ATTEMPTS = 3
|
50 |
|
51 |
+
# Initialize logging
|
52 |
logging.basicConfig(
|
53 |
level=logging.INFO,
|
54 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
|
59 |
)
|
60 |
logger = logging.getLogger(__name__)
|
61 |
|
62 |
+
# Model configuration
|
63 |
+
MODEL_NAME = "deepseek-ai/deepseek-llm-7b"
|
64 |
|
65 |
+
# Initialize Hugging Face API
|
66 |
if HF_TOKEN:
|
67 |
hf_api = None
|
68 |
for attempt in range(3):
|
|
|
73 |
break
|
74 |
except Exception as e:
|
75 |
logger.error(f"Attempt {attempt + 1} failed to initialize Hugging Face API: {str(e)}")
|
76 |
+
time.sleep(2 ** attempt)
|
77 |
|
78 |
# ========== LEARNING STYLE QUIZ ==========
|
79 |
class LearningStyleQuiz:
|
|
|
119 |
'kinesthetic': 0
|
120 |
}
|
121 |
|
|
|
122 |
for answer in answers:
|
123 |
if answer.startswith("See") or answer.startswith("Draw") or answer.startswith("Watch") or "diagram" in answer.lower():
|
124 |
style_counts['visual'] += 1
|
|
|
132 |
primary_style = max(style_counts, key=style_counts.get)
|
133 |
secondary_styles = sorted(style_counts.items(), key=lambda x: x[1], reverse=True)[1:3]
|
134 |
|
|
|
135 |
result = [
|
136 |
"## π― Your Learning Style Results",
|
137 |
f"Your primary learning style is **{primary_style.capitalize()}**",
|
|
|
181 |
# Initialize learning style quiz
|
182 |
learning_style_quiz = LearningStyleQuiz()
|
183 |
|
184 |
+
# ========== MODEL LOADER ==========
|
185 |
class ModelLoader:
|
186 |
def __init__(self):
|
187 |
self.model = None
|
|
|
194 |
self.max_retries = 3
|
195 |
|
196 |
def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]:
|
|
|
197 |
if self.loaded:
|
198 |
return self.model, self.tokenizer
|
199 |
|
|
|
209 |
if progress:
|
210 |
progress(0.1, desc="Initializing model environment...")
|
211 |
|
|
|
212 |
if self.device == "cuda":
|
213 |
torch.cuda.empty_cache()
|
214 |
torch.cuda.reset_peak_memory_stats()
|
|
|
216 |
if progress:
|
217 |
progress(0.2, desc="Loading tokenizer...")
|
218 |
|
|
|
219 |
tokenizer = None
|
220 |
for attempt in range(3):
|
221 |
try:
|
|
|
234 |
if progress:
|
235 |
progress(0.5, desc="Loading model (this may take a few minutes)...")
|
236 |
|
|
|
237 |
model_kwargs = {
|
238 |
"trust_remote_code": True,
|
239 |
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
|
|
|
242 |
"offload_folder": "offload"
|
243 |
}
|
244 |
|
|
|
245 |
if torch.cuda.device_count() > 1:
|
246 |
model_kwargs["max_memory"] = {i: "20GiB" for i in range(torch.cuda.device_count())}
|
247 |
|
|
|
268 |
logger.warning(f"Model loading attempt {attempt + 1} failed: {str(e)}")
|
269 |
time.sleep(2 ** attempt)
|
270 |
|
|
|
271 |
if progress:
|
272 |
progress(0.8, desc="Verifying model...")
|
273 |
test_input = tokenizer("Test", return_tensors="pt").to(self.device)
|
|
|
299 |
def get_model_and_tokenizer():
|
300 |
return model_loader.load_model()
|
301 |
|
302 |
+
# ========== TRANSCRIPT PARSER ==========
|
303 |
+
class MiamiDadeTranscriptParser:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
def __init__(self):
|
305 |
+
self.student_info_pattern = re.compile(
|
306 |
+
r"(\d{7}) - (.*?)\s*\|\s*Current Grade:\s*(\d+)\s*\|\s*YOG\s*(\d{4})"
|
307 |
+
r"\s*\|\s*Weighted GPA\s*([\d.]+)\s*\|\s*Comm Serv Date\s*(\d{2}/\d{2}/\d{4})"
|
308 |
+
r"\s*\|\s*Total Credits Earned\s*([\d.]+)"
|
309 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
+
self.requirement_pattern = re.compile(
|
312 |
+
r"([A-Z]-[A-Za-z ]+)\s*\|\s*([^|]+)\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([^|]+)%"
|
313 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
+
self.course_pattern = re.compile(
|
316 |
+
r"([A-Z]-[A-Za-z ]+)\s*\|\s*(\d{4}-\d{4})\s*\|\s*(\d{2})\s*\|\s*([A-Z0-9]+)\s*\|\s*([^|]+)\|"
|
317 |
+
r"\s*([A-Z0-9])\s*\|\s*(\d+)\s*\|\s*([A-Z])\s*\|\s*([A-Z])\s*\|\s*([\d.]+|inProgress)"
|
318 |
+
)
|
319 |
+
|
320 |
+
def parse_transcript(self, file_path: str) -> Dict:
|
321 |
+
"""Parse Miami-Dade County transcript PDF"""
|
322 |
+
with pdfplumber.open(file_path) as pdf:
|
323 |
+
text = "\n".join(page.extract_text() for page in pdf.pages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
parsed_data = {
|
326 |
+
'student_info': self._parse_student_info(text),
|
327 |
+
'requirements': self._parse_requirements(text),
|
328 |
+
'course_history': self._parse_courses(text)
|
|
|
329 |
}
|
330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
return parsed_data
|
332 |
+
|
333 |
+
def _parse_student_info(self, text: str) -> Dict:
|
334 |
+
"""Extract student information"""
|
335 |
+
match = self.student_info_pattern.search(text)
|
336 |
+
if not match:
|
337 |
+
return {}
|
338 |
+
|
339 |
+
return {
|
340 |
+
'id': match.group(1),
|
341 |
+
'name': match.group(2).strip(),
|
342 |
+
'grade': match.group(3),
|
343 |
+
'year_of_graduation': match.group(4),
|
344 |
+
'weighted_gpa': float(match.group(5)),
|
345 |
+
'community_service_date': match.group(6),
|
346 |
+
'total_credits': float(match.group(7)),
|
347 |
+
'district': 'Miami-Dade'
|
348 |
+
}
|
349 |
+
|
350 |
+
def _parse_requirements(self, text: str) -> Dict:
|
351 |
+
"""Parse graduation requirements section"""
|
352 |
+
requirements = {}
|
353 |
+
for match in self.requirement_pattern.finditer(text):
|
354 |
+
requirements[match.group(1).strip()] = {
|
355 |
+
'description': match.group(2).strip(),
|
356 |
+
'required': float(match.group(3)),
|
357 |
+
'waived': float(match.group(4)),
|
358 |
+
'completed': float(match.group(5)),
|
359 |
+
'percent_complete': float(match.group(6))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
}
|
361 |
+
return requirements
|
362 |
+
|
363 |
+
def _parse_courses(self, text: str) -> List[Dict]:
|
364 |
+
"""Parse course history section"""
|
365 |
+
courses = []
|
366 |
+
for match in self.course_pattern.finditer(text):
|
367 |
+
courses.append({
|
368 |
+
'requirement': match.group(1).strip(),
|
369 |
+
'school_year': match.group(2),
|
370 |
+
'grade_level': match.group(3),
|
371 |
+
'course_code': match.group(4),
|
372 |
+
'description': match.group(5).strip(),
|
373 |
+
'term': match.group(6),
|
374 |
+
'district_number': match.group(7),
|
375 |
+
'included': match.group(8),
|
376 |
+
'credits': 0 if 'inProgress' in match.group(9) else float(match.group(9)),
|
377 |
+
'status': 'In Progress' if 'inProgress' in match.group(9) else 'Completed'
|
378 |
+
})
|
379 |
+
return courses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
+
# Initialize transcript parser
|
382 |
+
transcript_parser = MiamiDadeTranscriptParser()
|
383 |
|
384 |
+
# ========== ACADEMIC ANALYZER ==========
|
385 |
class AcademicAnalyzer:
|
386 |
def __init__(self):
|
387 |
self.gpa_scale = {
|
|
|
397 |
}
|
398 |
|
399 |
def analyze_gpa(self, parsed_data: Dict) -> Dict:
|
|
|
400 |
analysis = {
|
401 |
'rating': '',
|
402 |
'description': '',
|
|
|
454 |
"Focus on fundamental study skills"
|
455 |
]
|
456 |
|
|
|
457 |
if weighted_gpa > 0 and unweighted_gpa > 0:
|
458 |
diff = weighted_gpa - unweighted_gpa
|
459 |
if diff > 0.5:
|
|
|
473 |
}
|
474 |
|
475 |
def analyze_graduation_status(self, parsed_data: Dict) -> Dict:
|
|
|
476 |
analysis = {
|
477 |
'status': '',
|
478 |
'completion_percentage': 0,
|
|
|
496 |
|
497 |
analysis['completion_percentage'] = (total_completed / total_required) * 100 if total_required > 0 else 0
|
498 |
|
|
|
499 |
analysis['missing_requirements'] = [
|
500 |
{
|
501 |
'code': code,
|
|
|
507 |
if req and float(req.get('completed', 0)) < float(req.get('required', 0))
|
508 |
]
|
509 |
|
|
|
510 |
current_grade = parsed_data.get('student_info', {}).get('grade', '')
|
511 |
grad_year = parsed_data.get('student_info', {}).get('year_of_graduation', '')
|
512 |
|
|
|
526 |
analysis['status'] = f"β You've only completed {analysis['completion_percentage']:.1f}% of requirements. Immediate action needed."
|
527 |
analysis['on_track'] = False
|
528 |
|
|
|
529 |
if current_grade and grad_year:
|
530 |
remaining_credits = total_required - total_completed
|
531 |
years_remaining = int(grad_year) - datetime.datetime.now().year - int(current_grade)
|
|
|
548 |
}
|
549 |
|
550 |
def analyze_course_rigor(self, parsed_data: Dict) -> Dict:
|
|
|
551 |
analysis = {
|
552 |
'advanced_courses': 0,
|
553 |
'honors_courses': 0,
|
|
|
621 |
}
|
622 |
|
623 |
def generate_college_recommendations(self, parsed_data: Dict) -> Dict:
|
|
|
624 |
recommendations = {
|
625 |
'reach': [],
|
626 |
'target': [],
|
|
|
630 |
}
|
631 |
|
632 |
try:
|
|
|
633 |
weighted_gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
|
634 |
rigor_analysis = self.analyze_course_rigor(parsed_data)
|
635 |
service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
|
636 |
|
|
|
637 |
if weighted_gpa >= 4.3 and rigor_analysis['advanced_courses'] >= 8 and service_hours >= 100:
|
638 |
recommendations['reach'].extend([
|
639 |
"Ivy League: Harvard, Yale, Princeton, Columbia, etc.",
|
|
|
681 |
"Technical Schools"
|
682 |
])
|
683 |
|
|
|
684 |
if weighted_gpa >= 4.0:
|
685 |
recommendations['scholarships'].extend([
|
686 |
"National Merit Scholarship",
|
|
|
700 |
"First-Generation Student Programs"
|
701 |
])
|
702 |
|
|
|
703 |
if weighted_gpa < 3.5:
|
704 |
recommendations['improvement_areas'].append("Improve GPA through focused study and tutoring")
|
705 |
if rigor_analysis['advanced_courses'] < 4:
|
|
|
718 |
}
|
719 |
|
720 |
def generate_study_plan(self, parsed_data: Dict, learning_style: str) -> Dict:
|
|
|
721 |
plan = {
|
722 |
'weekly_schedule': {},
|
723 |
'study_strategies': [],
|
|
|
726 |
}
|
727 |
|
728 |
try:
|
|
|
729 |
current_courses = [
|
730 |
course for course in parsed_data.get('course_history', [])
|
731 |
if course.get('status', '').lower() == 'in progress'
|
732 |
]
|
733 |
|
|
|
734 |
days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
|
735 |
for day in days:
|
736 |
plan['weekly_schedule'][day] = []
|
737 |
|
738 |
+
study_blocks = 2
|
|
|
739 |
if learning_style.lower() == 'visual':
|
740 |
study_blocks = 3
|
741 |
plan['study_strategies'].extend([
|
|
|
765 |
"Use hands-on activities when possible"
|
766 |
])
|
767 |
|
|
|
768 |
for i, course in enumerate(current_courses):
|
769 |
+
day_index = i % 5
|
770 |
day = days[day_index]
|
771 |
plan['weekly_schedule'][day].append({
|
772 |
'course': course.get('description', 'Course'),
|
|
|
778 |
]
|
779 |
})
|
780 |
|
|
|
781 |
plan['time_management_tips'].extend([
|
782 |
"Use the Pomodoro technique (25 min study, 5 min break)",
|
783 |
"Prioritize assignments by due date and importance",
|
784 |
"Schedule regular review sessions"
|
785 |
])
|
786 |
|
|
|
787 |
plan['resource_recommendations'].extend([
|
788 |
"Khan Academy for math and science",
|
789 |
"Quizlet for flashcards",
|
|
|
802 |
# Initialize academic analyzer
|
803 |
academic_analyzer = AcademicAnalyzer()
|
804 |
|
805 |
+
# ========== DATA VISUALIZER ==========
|
806 |
class DataVisualizer:
|
807 |
def __init__(self):
|
808 |
self.color_palette = {
|
|
|
817 |
}
|
818 |
|
819 |
def create_gpa_visualization(self, parsed_data: Dict):
|
|
|
820 |
try:
|
821 |
gpa_data = {
|
822 |
"Type": ["Weighted GPA", "Unweighted GPA"],
|
|
|
843 |
hover_data={"Type": True, "Value": ":.2f"}
|
844 |
)
|
845 |
|
|
|
846 |
fig.add_hline(y=4.0, line_dash="dot", line_color="green", annotation_text="Excellent", annotation_position="top left")
|
847 |
fig.add_hline(y=3.0, line_dash="dot", line_color="orange", annotation_text="Good", annotation_position="top left")
|
848 |
fig.add_hline(y=2.0, line_dash="dot", line_color="red", annotation_text="Minimum", annotation_position="top left")
|
|
|
869 |
return None
|
870 |
|
871 |
def create_requirements_visualization(self, parsed_data: Dict):
|
|
|
872 |
try:
|
873 |
req_data = []
|
874 |
for code, req in parsed_data.get('requirements', {}).items():
|
|
|
927 |
return None
|
928 |
|
929 |
def create_credits_distribution_visualization(self, parsed_data: Dict):
|
|
|
930 |
try:
|
931 |
core_credits = sum(
|
932 |
req['completed'] for req in parsed_data.get('requirements', {}).values()
|
933 |
+
if req and req.get('code', '').split('-')[0] in ['A', 'B', 'C', 'D']
|
934 |
)
|
935 |
|
936 |
elective_credits = sum(
|
937 |
req['completed'] for req in parsed_data.get('requirements', {}).values()
|
938 |
+
if req and req.get('code', '').split('-')[0] in ['G', 'H']
|
939 |
)
|
940 |
|
941 |
other_credits = sum(
|
942 |
req['completed'] for req in parsed_data.get('requirements', {}).values()
|
943 |
+
if req and req.get('code', '').split('-')[0] in ['E', 'F']
|
944 |
)
|
945 |
|
946 |
credit_values = [core_credits, elective_credits, other_credits]
|
|
|
988 |
return None
|
989 |
|
990 |
def create_course_rigor_visualization(self, parsed_data: Dict):
|
|
|
991 |
try:
|
992 |
rigor = academic_analyzer.analyze_course_rigor(parsed_data)
|
993 |
|
|
|
1036 |
# Initialize visualizer
|
1037 |
data_visualizer = DataVisualizer()
|
1038 |
|
1039 |
+
# ========== PROFILE MANAGER ==========
|
1040 |
class EnhancedProfileManager:
|
1041 |
def __init__(self):
|
1042 |
self.profiles_dir = Path(PROFILES_DIR)
|
|
|
1058 |
movie: str, movie_reason: str, show: str, show_reason: str,
|
1059 |
book: str, book_reason: str, character: str, character_reason: str,
|
1060 |
blog: str, study_plan: Dict = None) -> str:
|
|
|
1061 |
try:
|
1062 |
name = validate_name(name)
|
1063 |
age = validate_age(age)
|
|
|
1071 |
if not learning_style or "Your primary learning style is" not in learning_style:
|
1072 |
raise ValueError("Please complete the learning style quiz first.")
|
1073 |
|
|
|
1074 |
favorites = {
|
1075 |
"movie": sanitize_input(movie),
|
1076 |
"movie_reason": sanitize_input(movie_reason),
|
|
|
1082 |
"character_reason": sanitize_input(character_reason)
|
1083 |
}
|
1084 |
|
|
|
1085 |
if not study_plan:
|
1086 |
learning_style_match = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*", learning_style)
|
1087 |
if learning_style_match:
|
|
|
1089 |
transcript,
|
1090 |
learning_style_match.group(1))
|
1091 |
|
|
|
1092 |
data = {
|
1093 |
"name": self.encryptor.encrypt(name),
|
1094 |
"age": age,
|
1095 |
"interests": self.encryptor.encrypt(sanitize_input(interests)),
|
1096 |
+
"transcript": transcript,
|
1097 |
"learning_style": learning_style,
|
1098 |
"favorites": favorites,
|
1099 |
"blog": self.encryptor.encrypt(sanitize_input(blog)) if blog else "",
|
1100 |
"study_plan": study_plan if study_plan else {},
|
1101 |
"session_token": self.current_session,
|
1102 |
"last_updated": time.time(),
|
1103 |
+
"version": "2.0"
|
1104 |
}
|
1105 |
|
1106 |
filepath = self.get_profile_path(name)
|
1107 |
|
|
|
1108 |
temp_path = filepath.with_suffix('.tmp')
|
1109 |
with open(temp_path, "w", encoding='utf-8') as f:
|
1110 |
json.dump(data, f, indent=2, ensure_ascii=False)
|
1111 |
+
temp_path.replace(filepath)
|
1112 |
|
|
|
1113 |
if HF_TOKEN and hf_api:
|
1114 |
try:
|
1115 |
hf_api.upload_file(
|
|
|
1129 |
raise gr.Error(f"Couldn't save profile: {str(e)}")
|
1130 |
|
1131 |
def load_profile(self, name: str = None, session_token: str = None) -> Dict:
|
|
|
1132 |
for attempt in range(MAX_PROFILE_LOAD_ATTEMPTS):
|
1133 |
try:
|
1134 |
if session_token:
|
|
|
1143 |
if name:
|
1144 |
profile_file = self.get_profile_path(name)
|
1145 |
if not profile_file.exists():
|
|
|
1146 |
if HF_TOKEN and hf_api:
|
1147 |
try:
|
1148 |
hf_api.download_file(
|
|
|
1157 |
else:
|
1158 |
raise gr.Error(f"No profile found for {name}")
|
1159 |
else:
|
|
|
1160 |
profiles.sort(key=lambda x: x.stat().st_mtime, reverse=True)
|
1161 |
profile_file = profiles[0]
|
1162 |
|
1163 |
with open(profile_file, "r", encoding='utf-8') as f:
|
1164 |
profile_data = json.load(f)
|
1165 |
|
|
|
1166 |
if time.time() - profile_data.get('last_updated', 0) > SESSION_TIMEOUT:
|
1167 |
raise gr.Error("Session expired. Please start a new session.")
|
1168 |
|
|
|
1169 |
if profile_data.get('version', '1.0') == '2.0':
|
1170 |
try:
|
1171 |
profile_data['name'] = self.encryptor.decrypt(profile_data['name'])
|
|
|
1189 |
time.sleep(0.5 * (attempt + 1))
|
1190 |
|
1191 |
def list_profiles(self, session_token: str = None) -> List[str]:
|
|
|
1192 |
if session_token:
|
1193 |
profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json"))
|
1194 |
else:
|
|
|
1213 |
return profile_names
|
1214 |
|
1215 |
def delete_profile(self, name: str, session_token: str = None) -> bool:
|
|
|
1216 |
try:
|
1217 |
profile_file = self.get_profile_path(name)
|
1218 |
if not profile_file.exists():
|
1219 |
return False
|
1220 |
|
|
|
1221 |
with open(profile_file, "r", encoding='utf-8') as f:
|
1222 |
data = json.load(f)
|
1223 |
if session_token and data.get('session_token') != session_token:
|
1224 |
return False
|
1225 |
|
|
|
1226 |
profile_file.unlink()
|
1227 |
|
|
|
1228 |
if HF_TOKEN and hf_api:
|
1229 |
try:
|
1230 |
hf_api.delete_file(
|
|
|
1240 |
logger.error(f"Error deleting profile: {str(e)}")
|
1241 |
return False
|
1242 |
|
1243 |
+
# Initialize profile manager
|
1244 |
profile_manager = EnhancedProfileManager()
|
1245 |
|
1246 |
+
# ========== TEACHING ASSISTANT ==========
|
1247 |
class EnhancedTeachingAssistant:
|
1248 |
def __init__(self):
|
1249 |
self.context_history = []
|
|
|
1252 |
self.last_model_load_attempt = 0
|
1253 |
|
1254 |
async def initialize_model(self):
|
|
|
1255 |
if not self.model or not self.tokenizer:
|
1256 |
+
if time.time() - self.last_model_load_attempt > 3600:
|
1257 |
self.model, self.tokenizer = get_model_and_tokenizer()
|
1258 |
self.last_model_load_attempt = time.time()
|
1259 |
|
1260 |
async def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str:
|
|
|
1261 |
try:
|
1262 |
await self.initialize_model()
|
1263 |
|
|
|
1267 |
|
1268 |
self._update_context(message, history)
|
1269 |
|
|
|
1270 |
student_name = profile.get('name', 'Student')
|
1271 |
gpa = profile.get('transcript', {}).get('student_info', {}).get('weighted_gpa', None)
|
1272 |
learning_style = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*",
|
1273 |
profile.get('learning_style', ''))
|
1274 |
learning_style = learning_style.group(1) if learning_style else None
|
1275 |
|
|
|
1276 |
context = f"You are an AI teaching assistant helping {student_name}. "
|
1277 |
if gpa:
|
1278 |
context += f"{student_name}'s current weighted GPA is {gpa}. "
|
1279 |
if learning_style:
|
1280 |
context += f"They are a {learning_style.lower()} learner. "
|
1281 |
|
|
|
1282 |
if self.context_history:
|
1283 |
context += "Recent conversation:\n"
|
1284 |
for item in self.context_history[-self.max_context_length:]:
|
1285 |
role = "Student" if item['role'] == 'user' else "Assistant"
|
1286 |
context += f"{role}: {item['content']}\n"
|
1287 |
|
|
|
1288 |
query_type = self._classify_query(message)
|
1289 |
response = await self._generate_typed_response(query_type, message, context, profile)
|
1290 |
|
|
|
1295 |
return "I encountered an error processing your request. Please try again."
|
1296 |
|
1297 |
def _classify_query(self, message: str) -> str:
|
|
|
1298 |
message_lower = message.lower()
|
1299 |
|
1300 |
if any(word in message_lower for word in ['gpa', 'grade', 'average']):
|
|
|
1313 |
return 'general'
|
1314 |
|
1315 |
async def _generate_typed_response(self, query_type: str, message: str, context: str, profile: Dict) -> str:
|
|
|
1316 |
if query_type == 'gpa':
|
1317 |
return self._generate_gpa_response(profile)
|
1318 |
elif query_type == 'study':
|
|
|
1329 |
return await self._generate_general_response(message, context)
|
1330 |
|
1331 |
def _generate_gpa_response(self, profile: Dict) -> str:
|
|
|
1332 |
gpa = profile.get('transcript', {}).get('student_info', {}).get('weighted_gpa', None)
|
1333 |
if not gpa:
|
1334 |
return "I couldn't find your GPA information. Please upload your transcript first."
|
|
|
1354 |
return "\n\n".join(response)
|
1355 |
|
1356 |
def _generate_study_response(self, profile: Dict) -> str:
|
|
|
1357 |
learning_style_match = re.search(r"Your primary learning style is\s*\*\*(.*?)\*\*",
|
1358 |
profile.get('learning_style', ''))
|
1359 |
if not learning_style_match:
|
|
|
1369 |
if study_plan.get('study_strategies'):
|
1370 |
response.extend([f"- {strategy}" for strategy in study_plan['study_strategies']])
|
1371 |
else:
|
|
|
1372 |
if learning_style.lower() == 'visual':
|
1373 |
response.extend([
|
1374 |
"- Use color coding in your notes",
|
|
|
1401 |
return "\n\n".join(response)
|
1402 |
|
1403 |
def _generate_courses_response(self, profile: Dict) -> str:
|
|
|
1404 |
transcript = profile.get('transcript', {})
|
1405 |
if not transcript.get('course_history'):
|
1406 |
return "I couldn't find your course information. Please upload your transcript first."
|
1407 |
|
|
|
1408 |
current_courses = [
|
1409 |
course for course in transcript['course_history']
|
1410 |
if course.get('status', '').lower() == 'in progress'
|
1411 |
]
|
1412 |
|
|
|
1413 |
completed_courses = [
|
1414 |
course for course in transcript['course_history']
|
1415 |
if course.get('status', '').lower() == 'completed'
|
|
|
1419 |
|
1420 |
if current_courses:
|
1421 |
response.append("**Your Current Courses:**")
|
1422 |
+
for course in current_courses[:5]:
|
1423 |
response.append(
|
1424 |
f"- {course.get('description', 'Unknown')} "
|
1425 |
f"({course.get('course_code', '')})"
|
|
|
1429 |
|
1430 |
if completed_courses:
|
1431 |
response.append("\n**Recently Completed Courses:**")
|
1432 |
+
for course in completed_courses[:5]:
|
1433 |
grade = course.get('grade_earned', '')
|
1434 |
if grade:
|
1435 |
response.append(
|
|
|
1439 |
else:
|
1440 |
response.append(f"- {course.get('description', 'Unknown')}")
|
1441 |
|
|
|
1442 |
rigor = academic_analyzer.analyze_course_rigor(transcript)
|
1443 |
if rigor['rating']:
|
1444 |
response.append(f"\n**Course Rigor Analysis:** {rigor['rating']}")
|
|
|
1449 |
return "\n".join(response)
|
1450 |
|
1451 |
def _generate_college_response(self, profile: Dict) -> str:
|
|
|
1452 |
recommendations = academic_analyzer.generate_college_recommendations(profile.get('transcript', {}))
|
1453 |
|
1454 |
response = ["**College Recommendations Based on Your Profile:**"]
|
|
|
1476 |
return "\n".join(response)
|
1477 |
|
1478 |
def _generate_planning_response(self, profile: Dict) -> str:
|
|
|
1479 |
study_plan = profile.get('study_plan', {})
|
1480 |
|
1481 |
response = ["**Study Planning Advice:**"]
|
|
|
1485 |
for day, activities in study_plan['weekly_schedule'].items():
|
1486 |
if activities:
|
1487 |
response.append(f"\n**{day}:**")
|
1488 |
+
for activity in activities[:2]:
|
1489 |
response.append(
|
1490 |
f"- {activity.get('course', 'Course')}: "
|
1491 |
f"{activity.get('duration', '45-60 minutes')}"
|
|
|
1503 |
return "\n".join(response)
|
1504 |
|
1505 |
def _generate_resources_response(self, profile: Dict) -> str:
|
|
|
1506 |
study_plan = profile.get('study_plan', {})
|
1507 |
transcript = profile.get('transcript', {})
|
1508 |
|
1509 |
response = ["**Recommended Learning Resources:**"]
|
1510 |
|
|
|
1511 |
if study_plan.get('resource_recommendations'):
|
1512 |
response.extend([f"- {resource}" for resource in study_plan['resource_recommendations'][:3]])
|
1513 |
else:
|
1514 |
response.extend([
|
1515 |
+
"- Khan Academy for math and science",
|
1516 |
+
"- Quizlet for flashcards",
|
1517 |
"- Wolfram Alpha for math help"
|
1518 |
])
|
1519 |
|
|
|
1520 |
current_courses = [
|
1521 |
course for course in transcript.get('course_history', [])
|
1522 |
if course.get('status', '').lower() == 'in progress'
|
|
|
1524 |
|
1525 |
if current_courses:
|
1526 |
response.append("\n**Course-Specific Resources:**")
|
1527 |
+
for course in current_courses[:2]:
|
1528 |
course_name = course.get('description', 'your course')
|
1529 |
if 'MATH' in course_name.upper():
|
1530 |
response.append(f"- For {course_name}: Desmos Graphing Calculator, Art of Problem Solving")
|
|
|
1536 |
return "\n".join(response)
|
1537 |
|
1538 |
async def _generate_general_response(self, message: str, context: str) -> str:
|
|
|
1539 |
if not self.model or not self.tokenizer:
|
1540 |
return "I'm still loading my knowledge base. Please try again in a moment."
|
1541 |
|
|
|
1544 |
|
1545 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
1546 |
|
|
|
1547 |
outputs = self.model.generate(
|
1548 |
**inputs,
|
1549 |
max_new_tokens=200,
|
|
|
1555 |
|
1556 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
1557 |
|
|
|
1558 |
response = response[len(prompt):].strip()
|
1559 |
|
|
|
1560 |
if response and response[-1] not in {'.', '!', '?'}:
|
1561 |
last_period = response.rfind('.')
|
1562 |
if last_period > 0:
|
|
|
1568 |
return "I encountered an error generating a response. Please try again."
|
1569 |
|
1570 |
def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None:
|
|
|
1571 |
self.context_history.append({"role": "user", "content": message})
|
1572 |
|
1573 |
if history:
|
|
|
1577 |
if h[1]:
|
1578 |
self.context_history.append({"role": "assistant", "content": h[1]})
|
1579 |
|
|
|
1580 |
self.context_history = self.context_history[-(self.max_context_length * 2):]
|
1581 |
|
1582 |
+
# Initialize teaching assistant
|
1583 |
teaching_assistant = EnhancedTeachingAssistant()
|
1584 |
|
1585 |
+
# ========== UTILITY FUNCTIONS ==========
|
1586 |
+
class DataEncryptor:
|
1587 |
+
def __init__(self, key: str):
|
1588 |
+
self.cipher = Fernet(key.encode())
|
1589 |
|
1590 |
+
def encrypt(self, data: str) -> str:
|
1591 |
+
return self.cipher.encrypt(data.encode()).decode()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1592 |
|
1593 |
+
def decrypt(self, encrypted_data: str) -> str:
|
1594 |
+
return self.cipher.decrypt(encrypted_data.encode()).decode()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1595 |
|
1596 |
+
encryptor = DataEncryptor(ENCRYPTION_KEY)
|
|
|
1597 |
|
1598 |
+
def generate_session_token() -> str:
|
1599 |
+
alphabet = string.ascii_letters + string.digits
|
1600 |
+
return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH))
|
1601 |
+
|
1602 |
+
def sanitize_input(text: str) -> str:
|
1603 |
+
if not text:
|
1604 |
+
return ""
|
1605 |
+
text = html.escape(text.strip())
|
1606 |
+
text = re.sub(r'<[^>]*>', '', text)
|
1607 |
+
text = re.sub(r'[^\w\s\-.,!?@#\$%^&*()+=]', '', text)
|
1608 |
+
return text
|
1609 |
+
|
1610 |
+
def validate_name(name: str) -> str:
|
1611 |
+
name = name.strip()
|
1612 |
+
if not name:
|
1613 |
+
raise ValueError("Name cannot be empty.")
|
1614 |
+
if len(name) > 100:
|
1615 |
+
raise ValueError("Name is too long (maximum 100 characters).")
|
1616 |
+
if any(c.isdigit() for c in name):
|
1617 |
+
raise ValueError("Name cannot contain numbers.")
|
1618 |
+
return name
|
1619 |
+
|
1620 |
+
def validate_age(age: Union[int, float, str]) -> int:
|
1621 |
+
try:
|
1622 |
+
age_int = int(age)
|
1623 |
+
if not MIN_AGE <= age_int <= MAX_AGE:
|
1624 |
+
raise ValueError(f"Age must be between {MIN_AGE} and {MAX_AGE}.")
|
1625 |
+
return age_int
|
1626 |
+
except (ValueError, TypeError):
|
1627 |
+
raise ValueError("Please enter a valid age number.")
|
1628 |
+
|
1629 |
+
def validate_file(file_obj) -> None:
|
1630 |
+
if not file_obj:
|
1631 |
+
raise ValueError("Please upload a file first")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1632 |
|
1633 |
+
file_ext = os.path.splitext(file_obj.name)[1].lower()
|
1634 |
+
if file_ext not in ALLOWED_FILE_TYPES:
|
1635 |
+
raise ValueError(f"Invalid file type. Allowed types: {', '.join(ALLOWED_FILE_TYPES)}")
|
|
|
|
|
|
|
|
|
1636 |
|
1637 |
+
file_size = os.path.getsize(file_obj.name) / (1024 * 1024)
|
1638 |
+
if file_size > MAX_FILE_SIZE_MB:
|
1639 |
+
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1640 |
|
1641 |
+
def remove_sensitive_info(text: str) -> str:
|
1642 |
+
patterns = [
|
1643 |
+
(r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED-SSN]'),
|
1644 |
+
(r'\b\d{6,9}\b', '[ID]'),
|
1645 |
+
(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]'),
|
1646 |
+
(r'\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b', '[IP]'),
|
1647 |
+
(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', '[NAME]'),
|
1648 |
+
(r'\b\d{3}\) \d{3}-\d{4}\b', '[PHONE]'),
|
1649 |
+
(r'\b\d{1,5} [A-Z][a-z]+ [A-Z][a-z]+, [A-Z]{2} \d{5}\b', '[ADDRESS]')
|
1650 |
+
]
|
1651 |
+
|
1652 |
+
for pattern, replacement in patterns:
|
1653 |
+
text = re.sub(pattern, replacement, text)
|
1654 |
+
return text
|
1655 |
|
1656 |
+
# ========== GRADIO INTERFACE ==========
|
1657 |
def create_enhanced_interface():
|
1658 |
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
|
1659 |
session_token = gr.State(value=generate_session_token())
|
1660 |
profile_manager.set_session(session_token.value)
|
1661 |
|
1662 |
tab_completed = gr.State({
|
1663 |
+
0: False,
|
1664 |
+
1: False,
|
1665 |
+
2: False,
|
1666 |
+
3: False,
|
1667 |
+
4: False,
|
1668 |
+
5: False
|
1669 |
})
|
1670 |
|
|
|
1671 |
app.css = """
|
1672 |
.gradio-container {
|
1673 |
max-width: 1200px !important;
|
|
|
1780 |
border-left: 4px solid #2196F3;
|
1781 |
}
|
1782 |
|
|
|
1783 |
.dark .tab-content {
|
1784 |
background-color: #2d2d2d !important;
|
1785 |
border-color: #444 !important;
|
|
|
1821 |
}
|
1822 |
"""
|
1823 |
|
|
|
1824 |
with gr.Row():
|
1825 |
with gr.Column(scale=4):
|
1826 |
gr.Markdown("""
|
|
|
1831 |
with gr.Column(scale=1):
|
1832 |
dark_mode = gr.Checkbox(label="Dark Mode", value=False)
|
1833 |
|
|
|
1834 |
with gr.Row():
|
1835 |
with gr.Column(scale=1, min_width=100):
|
1836 |
step1 = gr.Button("π 1. Transcript", elem_classes="incomplete-tab")
|
|
|
1847 |
|
1848 |
nav_message = gr.HTML(visible=False)
|
1849 |
|
|
|
1850 |
with gr.Tabs(visible=True) as tabs:
|
|
|
1851 |
with gr.Tab("Transcript", id=0):
|
1852 |
with gr.Row():
|
1853 |
with gr.Column(scale=1):
|
|
|
1888 |
|
1889 |
def process_and_visualize(file_obj, tab_status):
|
1890 |
try:
|
1891 |
+
parsed_data = transcript_parser.parse_transcript(file_obj.name)
|
|
|
1892 |
|
|
|
1893 |
gpa_analysis = academic_analyzer.analyze_gpa(parsed_data)
|
1894 |
grad_status = academic_analyzer.analyze_graduation_status(parsed_data)
|
1895 |
college_recs = academic_analyzer.generate_college_recommendations(parsed_data)
|
1896 |
|
|
|
1897 |
results = [
|
1898 |
f"## π GPA Analysis",
|
1899 |
f"**Rating:** {gpa_analysis['rating']}",
|
|
|
1923 |
results.append("\n**Improvement Tips:**")
|
1924 |
results.extend([f"- {tip}" for tip in gpa_analysis['improvement_tips']])
|
1925 |
|
|
|
1926 |
viz_updates = [
|
1927 |
gr.update(visible=data_visualizer.create_gpa_visualization(parsed_data) is not None),
|
1928 |
gr.update(visible=data_visualizer.create_requirements_visualization(parsed_data) is not None),
|
|
|
1930 |
gr.update(visible=data_visualizer.create_course_rigor_visualization(parsed_data) is not None)
|
1931 |
]
|
1932 |
|
|
|
1933 |
tab_status[0] = True
|
1934 |
|
1935 |
return "\n".join(results), parsed_data, *viz_updates, tab_status
|
|
|
1950 |
outputs=step2
|
1951 |
)
|
1952 |
|
|
|
1953 |
with gr.Tab("Learning Style Quiz", id=1):
|
1954 |
with gr.Column():
|
1955 |
gr.Markdown("### π Step 2: Discover Your Learning Style")
|
|
|
2015 |
outputs=progress
|
2016 |
)
|
2017 |
|
|
|
2018 |
with gr.Tab("Personal Profile", id=2):
|
2019 |
with gr.Row():
|
2020 |
with gr.Column(scale=1):
|
|
|
2060 |
outputs=[tab_completed, step3, step4, save_confirmation]
|
2061 |
)
|
2062 |
|
|
|
2063 |
with gr.Tab("Save Profile", id=3):
|
2064 |
with gr.Row():
|
2065 |
with gr.Column(scale=1):
|
|
|
2159 |
]
|
2160 |
)
|
2161 |
|
|
|
2162 |
with gr.Tab("AI Assistant", id=4):
|
2163 |
gr.Markdown("## π¬ Your Personalized Learning Assistant")
|
2164 |
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
|
2165 |
|
|
|
2166 |
chatbot = gr.Chatbot(height=500)
|
2167 |
msg = gr.Textbox(label="Your Message")
|
2168 |
clear = gr.Button("Clear")
|
|
|
2175 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
2176 |
clear.click(lambda: None, None, chatbot, queue=False)
|
2177 |
|
|
|
2178 |
with gr.Tab("Goals & Planning", id=5):
|
2179 |
with gr.Row():
|
2180 |
with gr.Column(scale=1):
|
|
|
2203 |
calendar_output = gr.HTML()
|
2204 |
calendar_viz = gr.Plot(label="Calendar Visualization", visible=False)
|
2205 |
|
|
|
2206 |
goal_type.change(
|
2207 |
fn=lambda gt: gr.update(visible=gt in ["GPA Improvement", "Test Score"]),
|
2208 |
inputs=goal_type,
|
|
|
2255 |
|
2256 |
calendar = study_calendar.generate_study_calendar(profile, start_date.isoformat())
|
2257 |
|
|
|
2258 |
calendar_html = []
|
2259 |
current_date = datetime.date.fromisoformat(calendar['start_date'])
|
2260 |
end_date = datetime.date.fromisoformat(calendar['end_date'])
|
|
|
2298 |
gr.update(visible=study_calendar.create_calendar_visualization(calendar) is not None)
|
2299 |
)
|
2300 |
|
|
|
2301 |
add_goal_btn.click(
|
2302 |
fn=lambda gt, desc, date, val: (
|
2303 |
goal_tracker.add_goal(name.value, gt, desc, date, val),
|
|
|
2315 |
outputs=[goals_output, goal_viz]
|
2316 |
)
|
2317 |
|
|
|
2318 |
generate_calendar_btn.click(
|
2319 |
fn=lambda date: update_calendar_display(name.value, date),
|
2320 |
inputs=calendar_start_date,
|
2321 |
outputs=[calendar_output, calendar_viz]
|
2322 |
)
|
2323 |
|
|
|
2324 |
def navigate_to_tab(tab_index: int, tab_completed_status: dict):
|
|
|
2325 |
for i in range(tab_index):
|
2326 |
if not tab_completed_status.get(i, False):
|
2327 |
messages = [
|
|
|
2332 |
"Please complete the previous steps first"
|
2333 |
]
|
2334 |
return (
|
2335 |
+
gr.Tabs(selected=i),
|
2336 |
gr.update(
|
2337 |
value=f"<div class='error-message'>β {messages[i]}</div>",
|
2338 |
visible=True
|
|
|
2372 |
outputs=[tabs, nav_message]
|
2373 |
)
|
2374 |
|
|
|
2375 |
def toggle_dark_mode(dark):
|
2376 |
return gr.themes.Soft(primary_hue="blue", secondary_hue="gray") if not dark else gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate")
|
2377 |
|
|
|
2381 |
outputs=None
|
2382 |
)
|
2383 |
|
|
|
2384 |
app.load(fn=lambda: model_loader.load_model(), outputs=[])
|
2385 |
|
2386 |
return app
|