Spaces:
Runtime error
Runtime error
File size: 89,181 Bytes
b57ed91 3e64737 2c68bd8 3e64737 ce1eb3c efc52d4 cd3e466 e881a6a 0459869 9dc6d98 66cb301 ce1eb3c 9b7ad24 ce1eb3c cd3e466 9dc6d98 cd3e466 0459869 b198b5a 55e2010 e21d148 b198b5a 0459869 5b7059f 444c474 db322cc cd3e466 b198b5a ce1eb3c 9dc6d98 efc52d4 db322cc 5b7059f db322cc 5b7059f db322cc b198b5a 55e2010 db322cc 55e2010 0459869 b198b5a 55e2010 5b7059f db322cc b198b5a 55e2010 db322cc 55e2010 0459869 55e2010 db322cc 55e2010 db322cc 55e2010 5b7059f db322cc e881a6a db322cc e881a6a ce1eb3c cd3e466 ce1eb3c 5a3b92c d62b229 ce1eb3c e581856 41f6b04 e581856 41f6b04 e581856 41f6b04 e581856 ce1eb3c 41f6b04 ce1eb3c 41f6b04 ce1eb3c ce9371b ce1eb3c e581856 41f6b04 ce1eb3c 41f6b04 66cb301 e881a6a fcf1816 058e198 fcf1816 058e198 fcf1816 41f6b04 fcf1816 0459869 ed548e3 fcf1816 0459869 fcf1816 ed548e3 fcf1816 cd3e466 fcf1816 cd3e466 fcf1816 0459869 fcf1816 cd3e466 ed548e3 fcf1816 929de97 fcf1816 55e2010 e881a6a f17f847 0d7fd90 f17f847 4ed126e 41f6b04 d3a1938 55e2010 d3a1938 4ed126e e21d148 ce9371b 55e2010 ce9371b e21d148 ce9371b e21d148 ce9371b e21d148 ce9371b e21d148 ce9371b e21d148 ce9371b e21d148 ce9371b e21d148 ce9371b e21d148 d3a1938 ce9371b e21d148 ce9371b e21d148 ce9371b e21d148 ce9371b f17f847 0d7fd90 9dc6d98 0d7fd90 9dc6d98 0d7fd90 9dc6d98 ce9371b 9dc6d98 ce9371b 9dc6d98 0d7fd90 ce9371b 0d7fd90 ce9371b 0d7fd90 d3a1938 97d65ae 0d7fd90 ce9371b 9dc6d98 0d7fd90 f17f847 55e2010 9b7ad24 55e2010 b198b5a 55e2010 db322cc 9dc6d98 55e2010 e881a6a efc52d4 e881a6a 55e2010 d3a1938 55e2010 e881a6a 9b7ad24 efc52d4 9b7ad24 55e2010 0459869 55e2010 d3a1938 55e2010 d3a1938 55e2010 fcf1816 55e2010 b198b5a 55e2010 efc52d4 55e2010 9b7ad24 55e2010 e881a6a 9dc6d98 db322cc 0d7fd90 ce1eb3c e581856 fcf1816 e581856 ce1eb3c cd3e466 0d7fd90 fcf1816 ce1eb3c 0d7fd90 ed548e3 0d7fd90 55e2010 0d7fd90 55e2010 6f8fb84 55e2010 0d7fd90 55e2010 fcf1816 ce1eb3c 55e2010 ed548e3 55e2010 ed548e3 55e2010 ed548e3 0d7fd90 0e95f56 6f8fb84 ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 0e95f56 97d65ae ce1eb3c ed548e3 ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 0e95f56 6f8fb84 ce1eb3c 97d65ae 9dc6d98 97d65ae 0e95f56 97d65ae 48e62d8 41f6b04 ce1eb3c 41f6b04 ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 41f6b04 97d65ae 9dc6d98 ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 97d65ae f640af2 97d65ae 0459869 ce1eb3c 97d65ae ce1eb3c 41f6b04 ce1eb3c 97d65ae a703d91 97d65ae a703d91 97d65ae a703d91 97d65ae 9dc6d98 97d65ae 9dc6d98 97d65ae 9dc6d98 97d65ae f640af2 97d65ae a703d91 97d65ae 9dc6d98 97d65ae a703d91 0459869 97d65ae 3e64737 97d65ae 9dc6d98 97d65ae 48e62d8 12d1d7f 97d65ae 0459869 48e62d8 97d65ae d3a1938 97d65ae 48e62d8 d3a1938 97d65ae d3a1938 48e62d8 d3a1938 48e62d8 d3a1938 48e62d8 ce1eb3c 48e62d8 97d65ae 48e62d8 d3a1938 48e62d8 d3a1938 48e62d8 d3a1938 48e62d8 d3a1938 48e62d8 0e95f56 ce1eb3c 97d65ae 9dc6d98 97d65ae efc52d4 ed548e3 9dc6d98 97d65ae 9dc6d98 efc52d4 97d65ae efc52d4 ce1eb3c 97d65ae efc52d4 97d65ae efc52d4 ed548e3 97d65ae efc52d4 97d65ae efc52d4 0459869 ed548e3 41f6b04 ed548e3 efc52d4 41f6b04 ed548e3 0459869 e7a939b 41f6b04 0459869 41f6b04 ed548e3 55e2010 e7a939b ed548e3 e7a939b ed548e3 e7a939b 97d65ae efc52d4 ed548e3 97d65ae efc52d4 ed548e3 97d65ae ed548e3 97d65ae ed548e3 efc52d4 97d65ae 0459869 efc52d4 909d163 e7a939b 0459869 ed548e3 e7a939b 97d65ae ed548e3 efc52d4 ce1eb3c 97d65ae efc52d4 97d65ae 48e62d8 97d65ae 48e62d8 0459869 97d65ae 0459869 e7a939b 0459869 ed548e3 e7a939b a703d91 97d65ae 48e62d8 97d65ae efc52d4 a703d91 97d65ae efc52d4 97d65ae efc52d4 97d65ae efc52d4 97d65ae a703d91 97d65ae a703d91 efc52d4 8dff1ad 0459869 8dff1ad 0459869 e7a939b 0459869 ed548e3 e7a939b 97d65ae 8dff1ad 97d65ae 0459869 97d65ae 0459869 97d65ae efc52d4 97d65ae 48e62d8 97d65ae 48e62d8 97d65ae efc52d4 97d65ae 3af8029 97d65ae 3af8029 97d65ae efc52d4 97d65ae 0459869 41f6b04 0459869 41f6b04 efc52d4 0459869 a703d91 efc52d4 97d65ae efc52d4 97d65ae 0459869 0e95f56 97d65ae efc52d4 97d65ae 0459869 0e95f56 97d65ae efc52d4 97d65ae 0459869 0e95f56 97d65ae efc52d4 97d65ae 0459869 ce1eb3c 97d65ae efc52d4 97d65ae 0459869 a703d91 e881a6a 9dc6d98 efc52d4 97d65ae ce1eb3c efc52d4 ce1eb3c 6e6aad7 ce1eb3c 0d7fd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 |
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import html
from pathlib import Path
import fitz # PyMuPDF
import pytesseract
from PIL import Image
import io
import secrets
import string
from huggingface_hub import HfApi, HfFolder
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import logging
import asyncio
from functools import lru_cache
import hashlib
from concurrent.futures import ThreadPoolExecutor
# ========== CONFIGURATION ==========
PROFILES_DIR = "student_profiles"
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
MAX_FILE_SIZE_MB = 5
MIN_AGE = 5
MAX_AGE = 120
SESSION_TOKEN_LENGTH = 32
HF_TOKEN = os.getenv("HF_TOKEN")
SESSION_TIMEOUT = 3600 # 1 hour session timeout
# Initialize logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename='transcript_parser.log'
)
# Model configuration - Only DeepSeek
MODEL_NAME = "deepseek-ai/deepseek-llm-7b"
# Initialize Hugging Face API
if HF_TOKEN:
try:
hf_api = HfApi(token=HF_TOKEN)
HfFolder.save_token(HF_TOKEN)
except Exception as e:
logging.error(f"Failed to initialize Hugging Face API: {str(e)}")
# ========== CACHING AND PERFORMANCE OPTIMIZATIONS ==========
executor = ThreadPoolExecutor(max_workers=4)
# Cache model loading
@lru_cache(maxsize=1)
def get_model_and_tokenizer():
return model_loader.load_model()
# ========== MODEL LOADER ==========
class ModelLoader:
def __init__(self):
self.model = None
self.tokenizer = None
self.loaded = False
self.loading = False
self.error = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]:
"""Lazy load the model with progress feedback"""
try:
if progress:
progress(0.1, desc="Checking GPU availability...")
# Clear CUDA cache first
torch.cuda.empty_cache()
if progress:
progress(0.2, desc="Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True
)
if progress:
progress(0.5, desc="Loading model (this may take a few minutes)...")
# More robust model loading
model_kwargs = {
"trust_remote_code": True,
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
"device_map": "auto" if self.device == "cuda" else None,
"low_cpu_mem_usage": True,
"offload_folder": "offload" # For handling large models
}
try:
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
**model_kwargs
)
except torch.cuda.OutOfMemoryError:
# Fallback to CPU if GPU OOM
model_kwargs["device_map"] = None
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
**model_kwargs
).to('cpu')
self.device = 'cpu'
# Verify model is responsive
test_input = tokenizer("Test", return_tensors="pt").to(self.device)
_ = model.generate(**test_input, max_new_tokens=1)
self.model = model.eval()
self.tokenizer = tokenizer
self.loaded = True
return model, tokenizer
except Exception as e:
self.error = f"Model loading failed: {str(e)}"
logging.error(self.error)
return None, None
# Initialize model loader
model_loader = ModelLoader()
# ========== UTILITY FUNCTIONS ==========
def generate_session_token() -> str:
"""Generate a random session token for user identification."""
alphabet = string.ascii_letters + string.digits
return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH))
def sanitize_input(text: str) -> str:
"""Sanitize user input to prevent XSS and injection attacks."""
if not text:
return ""
# Basic HTML escaping and removal of potentially dangerous characters
text = html.escape(text.strip())
# Remove any remaining HTML tags
text = re.sub(r'<[^>]*>', '', text)
# Remove potentially dangerous characters
text = re.sub(r'[^\w\s\-.,!?@#\$%^&*()+=]', '', text)
return text
def validate_name(name: str) -> str:
"""Validate name input."""
name = name.strip()
if not name:
raise ValueError("Name cannot be empty. Please enter your full name.")
if len(name) > 100:
raise ValueError("Name is too long (maximum 100 characters).")
if any(c.isdigit() for c in name):
raise ValueError("Name cannot contain numbers.")
return name
def validate_age(age: Union[int, float, str]) -> int:
"""Validate and convert age input."""
try:
age_int = int(age)
if not MIN_AGE <= age_int <= MAX_AGE:
raise ValueError(f"Age must be between {MIN_AGE} and {MAX_AGE}.")
return age_int
except (ValueError, TypeError):
raise ValueError("Please enter a valid age number.")
def validate_file(file_obj) -> None:
"""Validate uploaded file."""
if not file_obj:
raise ValueError("Please upload a file first")
file_ext = os.path.splitext(file_obj.name)[1].lower()
if file_ext not in ALLOWED_FILE_TYPES:
raise ValueError(f"Invalid file type. Allowed types: {', '.join(ALLOWED_FILE_TYPES)}")
file_size = os.path.getsize(file_obj.name) / (1024 * 1024) # MB
if file_size > MAX_FILE_SIZE_MB:
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
# ========== TEXT EXTRACTION FUNCTIONS ==========
def extract_text_from_file(file_path: str, file_ext: str) -> str:
"""Enhanced text extraction with better error handling and fallbacks."""
text = ""
try:
if file_ext == '.pdf':
# First try PyMuPDF for text extraction
try:
doc = fitz.open(file_path)
for page in doc:
text += page.get_text("text") + '\n'
if not text.strip():
raise ValueError("PyMuPDF returned empty text - the PDF may be image-based")
except Exception as e:
logging.warning(f"PyMuPDF failed: {str(e)}. Trying OCR fallback...")
text = extract_text_from_pdf_with_ocr(file_path)
elif file_ext in ['.png', '.jpg', '.jpeg']:
text = extract_text_with_ocr(file_path)
# Clean up the extracted text
text = clean_extracted_text(text)
if not text.strip():
raise ValueError("No text could be extracted. Please ensure the file is clear and readable.")
return text
except Exception as e:
logging.error(f"Text extraction error: {str(e)}")
raise gr.Error(f"Failed to extract text: {str(e)}\n\nTIPS:\n1. For PDFs, try saving as a different PDF format\n2. For images, ensure they are high-quality and well-lit\n3. Try cropping to just the transcript area")
def extract_text_from_pdf_with_ocr(file_path: str) -> str:
"""Fallback PDF text extraction using OCR."""
text = ""
try:
doc = fitz.open(file_path)
for page in doc:
pix = page.get_pixmap()
img = Image.open(io.BytesIO(pix.tobytes()))
# Preprocess image for better OCR
img = img.convert('L') # Grayscale
img = img.point(lambda x: 0 if x < 128 else 255) # Binarize
text += pytesseract.image_to_string(img, config='--psm 6 --oem 3') + '\n'
except Exception as e:
raise ValueError(f"PDF OCR failed: {str(e)}. The PDF may be password protected or corrupted.")
return text
def extract_text_with_ocr(file_path: str) -> str:
"""Extract text from image files using OCR with preprocessing."""
try:
image = Image.open(file_path)
# Enhanced preprocessing
image = image.convert('L') # Convert to grayscale
image = image.point(lambda x: 0 if x < 128 else 255, '1') # Thresholding
# Custom Tesseract configuration
custom_config = r'--oem 3 --psm 6'
text = pytesseract.image_to_string(image, config=custom_config)
return text
except Exception as e:
raise ValueError(f"OCR processing failed: {str(e)}. Please ensure the image is clear and not blurry.")
def clean_extracted_text(text: str) -> str:
"""Clean and normalize the extracted text."""
# Remove multiple spaces and newlines
text = re.sub(r'\s+', ' ', text).strip()
# Fix common OCR errors
replacements = {
'|': 'I',
'‘': "'",
'’': "'",
'“': '"',
'”': '"',
'fi': 'fi',
'fl': 'fl'
}
for wrong, right in replacements.items():
text = text.replace(wrong, right)
return text
def remove_sensitive_info(text: str) -> str:
"""Remove potentially sensitive information from transcript text."""
# Remove social security numbers
text = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED]', text)
# Remove student IDs (assuming 6-9 digit numbers)
text = re.sub(r'\b\d{6,9}\b', '[ID]', text)
# Remove email addresses
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text)
return text
def validate_parsed_data(data: Dict) -> bool:
"""Validate the structure of parsed transcript data"""
required_student_fields = ['name', 'current_grade']
required_course_fields = ['description', 'credits']
if 'student_info' not in data:
return False
if not all(field in data['student_info'] for field in required_student_fields):
return False
if 'course_history' not in data or not isinstance(data['course_history'], list):
return False
if len(data['course_history']) > 0:
if not all(field in data['course_history'][0] for field in required_course_fields):
return False
return True
# ========== TRANSCRIPT PARSING ==========
class TranscriptParser:
def __init__(self):
self.student_data = {}
self.requirements = {}
self.current_courses = []
self.course_history = []
self.graduation_status = {}
def parse_transcript(self, text: str) -> Dict:
"""Parse Miami-Dade formatted transcripts with updated regex patterns."""
try:
# First try structured parsing for Miami-Dade format
if "Graduation Progress Summary" in text or "Miami-Dade" in text:
return self._parse_miami_dade_format(text)
else:
# Fall back to AI parsing if not Miami-Dade format
return parse_transcript_with_ai_fallback(text)
except Exception as e:
logging.error(f"Error parsing transcript: {str(e)}")
raise ValueError(f"Couldn't parse transcript: {str(e)}")
def _parse_miami_dade_format(self, text: str, strict_mode: bool = False) -> Dict:
"""Parse Miami-Dade County Public Schools transcripts."""
# Initialize PDF reader from text (simulating the PDF structure)
lines = [line.strip() for line in text.split('\n') if line.strip()]
# Initialize data structure
data = {
'student_info': {},
'graduation_requirements': [],
'course_history': [],
'summary': {},
'format': 'miami_dade' # Add format identifier
}
# Parse student information with more robust checks
student_info_lines = []
for i, line in enumerate(lines):
logging.debug(f"Processing line: {line}") # Added debug logging
if "DORAL ACADEMY HIGH SCHOOL" in line:
# Get the next 4 lines (or fewer if we're at the end)
student_info_lines = lines[i:i+5]
break
if student_info_lines:
try:
# Parse school and cohort info - more defensive
school_info_parts = student_info_lines[0].split('|')
if len(school_info_parts) > 2:
data['student_info']['school'] = school_info_parts[1].strip() if len(school_info_parts) > 1 else ''
data['student_info']['district'] = school_info_parts[2].strip() if len(school_info_parts) > 2 else ''
# Parse student name and ID - more defensive
if len(student_info_lines) > 1:
name_id_line = student_info_lines[1].split('-')
if len(name_id_line) > 1:
name_parts = name_id_line[1].split(',')
if len(name_parts) > 1:
data['student_info']['student_id'] = name_id_line[0].strip()
data['student_info']['student_name'] = name_parts[1].strip() + " " + name_parts[0].strip()
# Parse academic info - more defensive
if len(student_info_lines) > 2:
academic_info = student_info_lines[2].split('|')
if len(academic_info) > 5:
data['student_info']['current_grade'] = academic_info[1].split(':')[1].strip() if ':' in academic_info[1] else ''
data['student_info']['graduation_year'] = academic_info[2].strip()
data['student_info']['weighted_gpa'] = academic_info[3].split(':')[1].strip() if ':' in academic_info[3] else ''
data['student_info']['community_service_date'] = academic_info[4].split(':')[1].strip() if ':' in academic_info[4] else ''
data['student_info']['total_credits_earned'] = academic_info[5].split(':')[1].strip() if ':' in academic_info[5] else ''
# Validate we got the essential student info
if not data['student_info'].get('student_name'):
logging.warning("Failed to parse student name")
if strict_mode:
raise ValueError("Could not parse student name from transcript")
except Exception as e:
logging.warning(f"Error parsing student info: {str(e)}")
if strict_mode:
raise
# Parse graduation requirements
requirements_start = None
requirements_end = None
for i, line in enumerate(lines):
logging.debug(f"Processing line: {line}") # Added debug logging
if "Code" in line and "Description" in line and "Required" in line:
requirements_start = i + 1
if requirements_start and "Total" in line:
requirements_end = i
break
if requirements_start and requirements_end:
for line in lines[requirements_start:requirements_end]:
try:
if '|' in line:
parts = [p.strip() for p in line.split('|') if p.strip()]
if len(parts) >= 6:
req = {
'code': parts[0],
'description': parts[1],
'required': parts[2],
'waived': parts[3],
'completed': parts[4],
'status': parts[5]
}
data['graduation_requirements'].append(req)
except Exception as e:
logging.warning(f"Error parsing requirement line: {line} - {str(e)}")
if strict_mode:
raise
# Parse total line
try:
total_line = lines[requirements_end]
total_parts = [p.strip() for p in total_line.split('|') if p.strip()]
if len(total_parts) >= 5:
data['summary']['total_required'] = total_parts[1]
data['summary']['total_waived'] = total_parts[2]
data['summary']['total_completed'] = total_parts[3]
data['summary']['completion_percentage'] = total_parts[4]
except Exception as e:
logging.warning(f"Error parsing requirements summary: {str(e)}")
if strict_mode:
raise
# Parse course history
course_history_start = None
for i, line in enumerate(lines):
logging.debug(f"Processing line: {line}") # Added debug logging
if "Requirement" in line and "School Year" in line and "GradeLv1" in line:
course_history_start = i + 1
break
if course_history_start:
current_requirement = None
for line in lines[course_history_start:]:
try:
if '|' in line:
parts = [p.strip() for p in line.split('|') if p.strip()]
# Check if this is a new requirement line
if len(parts) >= 2 and parts[0] and parts[0] in [req['code'] for req in data['graduation_requirements']]:
current_requirement = parts[0]
parts = parts[1:] # Remove the requirement code
if len(parts) >= 9:
course = {
'requirement': current_requirement,
'school_year': parts[0],
'grade_level': parts[1],
'course_number': parts[2],
'description': parts[3],
'term': parts[4],
'district_number': parts[5],
'fg': parts[6],
'included': parts[7],
'credits': parts[8]
}
data['course_history'].append(course)
except Exception as e:
logging.warning(f"Error parsing course line: {line} - {str(e)}")
if strict_mode:
raise
# Calculate graduation status
try:
if data['summary'].get('total_required') and data['summary'].get('total_completed'):
graduation_status = {
'total_required_credits': float(data['summary']['total_required']),
'total_completed_credits': float(data['summary']['total_completed']),
'percent_complete': float(data['summary']['completion_percentage'].replace('%', '')),
'remaining_credits': float(data['summary']['total_required']) - float(data['summary']['total_completed']),
'on_track': float(data['summary']['completion_percentage'].replace('%', '')) >= 75.0
}
data['graduation_status'] = graduation_status
except Exception as e:
logging.warning(f"Error calculating graduation status: {str(e)}")
if strict_mode:
raise
return data
def format_transcript_output(data: Dict) -> str:
"""Enhanced formatting for transcript output with format awareness"""
output = []
# Student Info Section
student = data.get("student_info", {})
output.append(f"## Student Transcript Summary\n{'='*50}")
output.append(f"**Name:** {student.get('name', 'Unknown')}")
output.append(f"**Student ID:** {student.get('id', 'Unknown')}")
output.append(f"**Current Grade:** {student.get('current_grade', 'Unknown')}")
output.append(f"**Graduation Year:** {student.get('graduation_year', 'Unknown')}")
if 'unweighted_gpa' in student and 'weighted_gpa' in student:
output.append(f"**Unweighted GPA:** {student['unweighted_gpa']}")
output.append(f"**Weighted GPA:** {student['weighted_gpa']}")
elif 'gpa' in student:
output.append(f"**GPA:** {student['gpa']}")
if 'total_credits' in student:
output.append(f"**Total Credits Earned:** {student['total_credits']}")
if 'community_service_hours' in student:
output.append(f"**Community Service Hours:** {student['community_service_hours']}")
output.append("")
# Graduation Requirements Section (for Miami-Dade format)
if data.get('format') == 'miami_dade':
grad_status = data.get("graduation_status", {})
output.append(f"## Graduation Progress\n{'='*50}")
output.append(f"**Overall Completion:** {grad_status.get('percent_complete', 0)}%")
output.append(f"**Credits Required:** {grad_status.get('total_required_credits', 0)}")
output.append(f"**Credits Completed:** {grad_status.get('total_completed_credits', 0)}")
output.append(f"**Credits Remaining:** {grad_status.get('remaining_credits', 0)}")
output.append(f"**On Track to Graduate:** {'Yes' if grad_status.get('on_track', False) else 'No'}\n")
# Detailed Requirements
output.append("### Detailed Requirements:")
for req in data.get("graduation_requirements", []):
output.append(
f"- **{req['code']}**: {req['description']}\n"
f" Required: {req['required']} | Completed: {req['completed']} | "
f"Status: {req['status']}"
)
output.append("")
# Current Courses
if any(c.get('credits', '') == 'inProgress' for c in data.get("course_history", [])):
output.append("## Current Courses (In Progress)\n" + '='*50)
for course in data["course_history"]:
if course.get('credits', '') == 'inProgress':
output.append(
f"- **{course['course_number']} {course['description']}**\n"
f" Category: {course['requirement']} | "
f"Grade Level: {course['grade_level']} | "
f"Term: {course['term']} | Credits: {course['credits']}"
)
output.append("")
# Course History by Year
courses_by_year = defaultdict(list)
for course in data.get("course_history", []):
if course.get("school_year"):
courses_by_year[course["school_year"]].append(course)
if courses_by_year:
output.append("## Course History\n" + '='*50)
for year in sorted(courses_by_year.keys()):
output.append(f"\n### {year}")
for course in courses_by_year[year]:
output.append(
f"- **{course.get('course_number', '')} {course.get('description', 'Unnamed course')}**\n"
f" Subject: {course.get('requirement', 'N/A')} | "
f"Grade: {course.get('fg', 'N/A')} | "
f"Credits: {course.get('credits', 'N/A')}"
)
return '\n'.join(output)
def parse_transcript_with_ai_fallback(text: str, progress=gr.Progress()) -> Dict:
"""More robust AI parsing with better error handling"""
try:
text = remove_sensitive_info(text[:20000]) # Increased limit
# Improved prompt with examples
prompt = f"""Extract academic transcript data as JSON. Follow this structure:
Example Input:
Student ID: 1234567 Name: DOE, JOHN Current Grade: 12 YOG: 2024
Unweighted GPA: 3.5 Weighted GPA: 4.2 Total Credits: 24.5
Example Output:
{{
"student_info": {{
"name": "John Doe",
"id": "1234567",
"current_grade": "12",
"graduation_year": "2024",
"unweighted_gpa": 3.5,
"weighted_gpa": 4.2,
"total_credits": 24.5
}},
"course_history": [
{{
"course_code": "MATH101",
"description": "Algebra I",
"grade": "A",
"credits": 1.0,
"school_year": "2022-2023"
}}
]
}}
Actual Transcript:
{text}
"""
if progress:
progress(0.3, desc="Processing with AI...")
model, tokenizer = get_model_and_tokenizer()
if model is None:
raise ValueError("Model not loaded")
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model_loader.device)
outputs = model.generate(
**inputs,
max_new_tokens=2500,
temperature=0.3, # Lower for more consistent results
do_sample=True,
top_p=0.9,
repetition_penalty=1.2
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# More robust JSON extraction
try:
if '```json' in response:
json_str = response.split('```json')[1].split('```')[0].strip()
else:
json_str = response.split('{', 1)[1].rsplit('}', 1)[0]
json_str = '{' + json_str + '}'
parsed_data = json.loads(json_str)
# Validate required fields
if not all(k in parsed_data for k in ["student_info", "course_history"]):
raise ValueError("Missing required fields in AI response")
return parsed_data
except Exception as e:
logging.error(f"JSON parsing failed: {str(e)}")
raise ValueError(f"AI returned invalid format. Please try again.")
except Exception as e:
logging.error(f"AI parsing error: {str(e)}")
raise gr.Error(f"Failed to parse transcript: {str(e)}")
def parse_transcript_with_ai(text: str, progress=gr.Progress()) -> Dict:
"""Enhanced AI parsing with fallback to structured parsing"""
try:
# First try structured parsing
if progress:
progress(0.1, desc="Attempting structured parsing...")
parser = TranscriptParser()
parsed_data = parser.parse_transcript(text)
# Validate the parsed data
if not validate_parsed_data(parsed_data):
raise ValueError("Structured parsing returned incomplete data")
if progress:
progress(0.8, desc="Formatting results...")
return parsed_data
except Exception as e:
logging.warning(f"Structured parsing failed, falling back to AI: {str(e)}")
# Fall back to AI parsing if structured parsing fails
return parse_transcript_with_ai_fallback(text, progress)
async def parse_transcript_async(file_obj, progress=gr.Progress()) -> Tuple[str, Optional[Dict]]:
"""Async wrapper for transcript parsing"""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(executor, parse_transcript, file_obj, progress)
def parse_transcript(file_obj, progress=gr.Progress()) -> Tuple[str, Optional[Dict]]:
"""Main function to parse transcript files with better error handling"""
try:
if not file_obj:
raise ValueError("Please upload a file first")
validate_file(file_obj)
file_ext = os.path.splitext(file_obj.name)[1].lower()
# Extract text from file with better error reporting
if progress:
progress(0.2, desc="Extracting text from file...")
text = extract_text_from_file(file_obj.name, file_ext)
if not text.strip():
raise ValueError("No text could be extracted from the file. The file may be corrupted or in an unsupported format.")
# Try structured parsing first
if progress:
progress(0.4, desc="Attempting structured parsing...")
parser = TranscriptParser()
try:
parsed_data = parser.parse_transcript(text)
if validate_parsed_data(parsed_data):
if progress:
progress(0.9, desc="Formatting results...")
return format_transcript_output(parsed_data), parsed_data
except Exception as e:
logging.warning(f"Structured parsing failed: {str(e)}")
# Fall back to AI if structured fails
if progress:
progress(0.5, desc="Using AI analysis...")
parsed_data = parse_transcript_with_ai_fallback(text, progress)
return format_transcript_output(parsed_data), parsed_data
except Exception as e:
error_msg = f"Error processing transcript: {str(e)}"
# Add specific troubleshooting tips
if "PDF" in str(e):
error_msg += "\n\nTIPS:\n1. Try converting to image (screenshot)\n2. Ensure text is selectable in PDF\n3. Try a different PDF reader"
elif "image" in str(e).lower():
error_msg += "\n\nTIPS:\n1. Use high contrast images\n2. Crop to just the transcript\n3. Ensure good lighting"
elif "AI" in str(e):
error_msg += "\n\nTIPS:\n1. Try a smaller section of the transcript\n2. Check for sensitive info that may be redacted\n3. Try again later"
logging.error(error_msg)
return error_msg, None
# ========== LEARNING STYLE QUIZ ==========
class LearningStyleQuiz:
def __init__(self):
self.questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
self.options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
self.learning_styles = {
"Visual": {
"description": "Visual learners prefer using images, diagrams, and spatial understanding.",
"tips": [
"Use color coding in your notes",
"Create mind maps and diagrams",
"Watch educational videos",
"Use flashcards with images",
"Highlight important information in different colors"
],
"careers": [
"Graphic Designer", "Architect", "Photographer",
"Engineer", "Surgeon", "Pilot"
]
},
"Auditory": {
"description": "Auditory learners learn best through listening and speaking.",
"tips": [
"Record lectures and listen to them",
"Participate in study groups",
"Explain concepts out loud to yourself",
"Use rhymes or songs to remember information",
"Listen to educational podcasts"
],
"careers": [
"Musician", "Journalist", "Lawyer",
"Psychologist", "Teacher", "Customer Service"
]
},
"Reading/Writing": {
"description": "These learners prefer information displayed as words.",
"tips": [
"Write detailed notes",
"Create summaries in your own words",
"Read textbooks and articles",
"Make lists to organize information",
"Rewrite your notes to reinforce learning"
],
"careers": [
"Writer", "Researcher", "Editor",
"Accountant", "Programmer", "Historian"
]
},
"Kinesthetic": {
"description": "Kinesthetic learners learn through movement and hands-on activities.",
"tips": [
"Use hands-on activities",
"Take frequent movement breaks",
"Create physical models",
"Associate information with physical actions",
"Study while walking or pacing"
],
"careers": [
"Athlete", "Chef", "Mechanic",
"Dancer", "Physical Therapist", "Carpenter"
]
}
}
def evaluate_quiz(self, *answers) -> str:
"""Evaluate quiz answers and generate enhanced results."""
answers = list(answers) # Convert tuple to list
if len(answers) != len(self.questions):
raise gr.Error("Please answer all questions before submitting")
scores = {style: 0 for style in self.learning_styles}
for i, answer in enumerate(answers):
if not answer:
continue # Skip unanswered questions
for j, style in enumerate(self.learning_styles):
if answer == self.options[i][j]:
scores[style] += 1
break
total_answered = sum(1 for ans in answers if ans)
if total_answered == 0:
raise gr.Error("No answers provided")
percentages = {style: (score/total_answered)*100 for style, score in scores.items()}
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
# Generate enhanced results report
result = "## Your Learning Style Results\n\n"
result += "### Scores:\n"
for style, score in sorted_styles:
result += f"- **{style}**: {score}/{total_answered} ({percentages[style]:.1f}%)\n"
max_score = max(scores.values())
primary_styles = [style for style, score in scores.items() if score == max_score]
result += "\n### Analysis:\n"
if len(primary_styles) == 1:
primary_style = primary_styles[0]
style_info = self.learning_styles[primary_style]
result += f"Your primary learning style is **{primary_style}**\n\n"
result += f"**{primary_style} Characteristics**:\n"
result += f"{style_info['description']}\n\n"
result += "**Recommended Study Strategies**:\n"
for tip in style_info['tips']:
result += f"- {tip}\n"
result += "\n**Potential Career Paths**:\n"
for career in style_info['careers'][:6]:
result += f"- {career}\n"
# Add complementary strategies
complementary = [s for s in sorted_styles if s[0] != primary_style][0][0]
result += f"\nYou might also benefit from some **{complementary}** strategies:\n"
for tip in self.learning_styles[complementary]['tips'][:3]:
result += f"- {tip}\n"
else:
result += "You have multiple strong learning styles:\n"
for style in primary_styles:
result += f"- **{style}**\n"
result += "\n**Combined Learning Strategies**:\n"
result += "You may benefit from combining different learning approaches:\n"
for style in primary_styles:
result += f"\n**{style}** techniques:\n"
for tip in self.learning_styles[style]['tips'][:2]:
result += f"- {tip}\n"
result += f"\n**{style}** career suggestions:\n"
for career in self.learning_styles[style]['careers'][:3]:
result += f"- {career}\n"
return result
# Initialize quiz instance
learning_style_quiz = LearningStyleQuiz()
# ========== PROFILE MANAGEMENT ==========
class ProfileManager:
def __init__(self):
self.profiles_dir = Path(PROFILES_DIR)
self.profiles_dir.mkdir(exist_ok=True, parents=True)
self.current_session = None
def set_session(self, session_token: str) -> None:
"""Set the current session token."""
self.current_session = session_token
def get_profile_path(self, name: str) -> Path:
"""Get profile path with session token if available."""
if self.current_session:
# Hash the name for security
name_hash = hashlib.sha256(name.encode()).hexdigest()[:16]
return self.profiles_dir / f"{name_hash}_{self.current_session}_profile.json"
return self.profiles_dir / f"{name.replace(' ', '_')}_profile.json"
def save_profile(self, name: str, age: Union[int, str], interests: str,
transcript: Dict, learning_style: str,
movie: str, movie_reason: str, show: str, show_reason: str,
book: str, book_reason: str, character: str, character_reason: str,
blog: str) -> str:
"""Save student profile with better validation messages"""
try:
# Validate required fields with specific messages
if not name.strip():
raise ValueError("Name cannot be empty. Please enter your full name.")
if len(name) > 100:
raise ValueError("Name is too long (maximum 100 characters).")
if any(c.isdigit() for c in name):
raise ValueError("Name cannot contain numbers.")
try:
age_int = int(age)
if not MIN_AGE <= age_int <= MAX_AGE:
raise ValueError(f"Age must be between {MIN_AGE} and {MAX_AGE}.")
except (ValueError, TypeError):
raise ValueError("Please enter a valid age number.")
if not interests.strip():
raise ValueError("Please describe at least one interest or hobby.")
if not transcript:
raise ValueError("Please complete the transcript analysis first.")
# Validate learning style quiz completion
if not learning_style or "Your primary learning style is:" not in learning_style:
raise ValueError("Please complete the learning style quiz first.")
# Prepare favorites data
favorites = {
"movie": sanitize_input(movie),
"movie_reason": sanitize_input(movie_reason),
"show": sanitize_input(show),
"show_reason": sanitize_input(show_reason),
"book": sanitize_input(book),
"book_reason": sanitize_input(book_reason),
"character": sanitize_input(character),
"character_reason": sanitize_input(character_reason)
}
# Prepare full profile data
data = {
"name": name,
"age": age_int,
"interests": sanitize_input(interests),
"transcript": transcript if transcript else {},
"learning_style": learning_style if learning_style else "Not assessed",
"favorites": favorites,
"blog": sanitize_input(blog) if blog else "",
"session_token": self.current_session,
"last_updated": time.time()
}
# Save to JSON file
filepath = self.get_profile_path(name)
with open(filepath, "w", encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
# Upload to HF Hub if token is available
if HF_TOKEN and 'hf_api' in globals():
try:
hf_api.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"profiles/{filepath.name}",
repo_id="your-username/student-learning-assistant",
repo_type="dataset"
)
except Exception as e:
logging.error(f"Failed to upload to HF Hub: {str(e)}")
return self._generate_profile_summary(data)
except Exception as e:
logging.error(f"Profile validation error: {str(e)}")
raise gr.Error(f"Couldn't save profile: {str(e)}")
def load_profile(self, name: str = None, session_token: str = None) -> Dict:
"""Load profile by name or return the first one found."""
try:
if session_token:
profile_pattern = f"*{session_token}_profile.json"
else:
profile_pattern = "*.json"
profiles = list(self.profiles_dir.glob(profile_pattern))
if not profiles:
return {}
if name:
# Find profile by name (hashed)
name_hash = hashlib.sha256(name.encode()).hexdigest()[:16]
if session_token:
profile_file = self.profiles_dir / f"{name_hash}_{session_token}_profile.json"
else:
profile_file = self.profiles_dir / f"{name_hash}_profile.json"
if not profile_file.exists():
# Try loading from HF Hub
if HF_TOKEN and 'hf_api' in globals():
try:
hf_api.download_file(
path_in_repo=f"profiles/{profile_file.name}",
repo_id="your-username/student-learning-assistant",
repo_type="dataset",
local_dir=self.profiles_dir
)
except:
raise gr.Error(f"No profile found for {name}")
else:
raise gr.Error(f"No profile found for {name}")
else:
# Load the first profile found
profile_file = profiles[0]
with open(profile_file, "r", encoding='utf-8') as f:
profile_data = json.load(f)
# Check session timeout
if time.time() - profile_data.get('last_updated', 0) > SESSION_TIMEOUT:
raise gr.Error("Session expired. Please start a new session.")
return profile_data
except Exception as e:
logging.error(f"Error loading profile: {str(e)}")
return {}
def list_profiles(self, session_token: str = None) -> List[str]:
"""List all available profile names for the current session."""
if session_token:
profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json"))
else:
profiles = list(self.profiles_dir.glob("*.json"))
# Extract just the name part (without session token)
profile_names = []
for p in profiles:
with open(p, "r", encoding='utf-8') as f:
try:
data = json.load(f)
profile_names.append(data.get('name', p.stem))
except json.JSONDecodeError:
continue
return profile_names
def _generate_profile_summary(self, data: Dict) -> str:
"""Generate markdown summary of the profile."""
transcript = data.get("transcript", {})
favorites = data.get("favorites", {})
# Extract just the learning style name
learning_style = data.get("learning_style", "")
if "Your primary learning style is:" in learning_style:
style_match = re.search(r"Your primary learning style is: \*\*(.*?)\*\*", learning_style)
if style_match:
learning_style = style_match.group(1)
markdown = f"""## Student Profile: {data['name']}
### Basic Information
- **Age:** {data['age']}
- **Interests:** {data.get('interests', 'Not specified')}
- **Learning Style:** {learning_style}
### Academic Information
{self._format_transcript(transcript)}
### Favorites
- **Movie:** {favorites.get('movie', 'Not specified')}
*Reason:* {favorites.get('movie_reason', 'Not specified')}
- **TV Show:** {favorites.get('show', 'Not specified')}
*Reason:* {favorites.get('show_reason', 'Not specified')}
- **Book:** {favorites.get('book', 'Not specified')}
*Reason:* {favorites.get('book_reason', 'Not specified')}
- **Character:** {favorites.get('character', 'Not specified')}
*Reason:* {favorites.get('character_reason', 'Not specified')}
### Personal Blog
{data.get('blog', '_No blog provided_')}
"""
return markdown
def _format_transcript(self, transcript: Dict) -> str:
"""Format transcript data for display."""
if not transcript or "course_history" not in transcript:
return "_No transcript information available_"
display = "#### Course History\n"
courses_by_year = defaultdict(list)
for course in transcript.get("course_history", []):
if course.get("school_year"):
courses_by_year[course["school_year"]].append(course)
if courses_by_year:
for year in sorted(courses_by_year.keys()):
display += f"\n**{year}**\n"
for course in courses_by_year[year]:
display += f"- {course.get('course_code', '')} {course.get('description', 'Unnamed course')}"
if 'grade' in course and course['grade']:
display += f" (Grade: {course['grade']})"
if 'credits' in course:
display += f" | Credits: {course['credits']}"
display += f" | Category: {course.get('requirement_category', 'N/A')}\n"
if 'student_info' in transcript:
student = transcript['student_info']
display += "\n**Academic Summary**\n"
display += f"- Unweighted GPA: {student.get('unweighted_gpa', 'N/A')}\n"
display += f"- Weighted GPA: {student.get('weighted_gpa', 'N/A')}\n"
display += f"- Total Credits: {student.get('total_credits', 'N/A')}\n"
if 'graduation_status' in transcript:
status = transcript['graduation_status']
display += "\n**Graduation Progress**\n"
display += f"- Completion: {status.get('percent_complete', 0)}%\n"
display += f"- Credits Required: {status.get('total_required_credits', 0)}\n"
display += f"- Credits Completed: {status.get('total_completed_credits', 0)}\n"
display += f"- On Track: {'Yes' if status.get('on_track', False) else 'No'}\n"
return display
# Initialize profile manager
profile_manager = ProfileManager()
# ========== AI TEACHING ASSISTANT ==========
class TeachingAssistant:
def __init__(self):
self.context_history = []
self.max_context_length = 5 # Keep last 5 exchanges for context
async def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str:
"""Generate personalized response based on student profile and context."""
try:
# Load profile with session token
profile = profile_manager.load_profile(session_token=session_token)
if not profile:
return "Please complete and save your profile first using the previous tabs."
# Update context history
self._update_context(message, history)
# Extract profile information
name = profile.get("name", "there")
learning_style = profile.get("learning_style", "")
grade_level = profile.get("transcript", {}).get("student_info", {}).get("current_grade", "unknown")
gpa = profile.get("transcript", {}).get("student_info", {})
interests = profile.get("interests", "")
courses = profile.get("transcript", {}).get("course_history", [])
favorites = profile.get("favorites", {})
# Process message with context
response = await self._process_message(message, profile)
# Add follow-up suggestions
if "study" in message.lower() or "learn" in message.lower():
response += "\n\nWould you like me to suggest a study schedule based on your courses?"
elif "course" in message.lower() or "class" in message.lower():
response += "\n\nWould you like help finding resources for any of these courses?"
return response
except Exception as e:
logging.error(f"Error generating response: {str(e)}")
return "I encountered an error processing your request. Please try again."
def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None:
"""Maintain conversation context."""
self.context_history.append({"role": "user", "content": message})
if history:
for h in history[-self.max_context_length:]:
if h[0]: # User message
self.context_history.append({"role": "user", "content": h[0]})
if h[1]: # Assistant message
self.context_history.append({"role": "assistant", "content": h[1]})
# Trim to maintain max context length
self.context_history = self.context_history[-(self.max_context_length*2):]
async def _process_message(self, message: str, profile: Dict) -> str:
"""Process user message with profile context."""
message_lower = message.lower()
# Greetings
if any(greet in message_lower for greet in ["hi", "hello", "hey", "greetings"]):
return f"Hello {profile.get('name', 'there')}! How can I help you with your learning today?"
# Study help
study_words = ["study", "learn", "prepare", "exam", "test", "homework"]
if any(word in message_lower for word in study_words):
return self._generate_study_advice(profile)
# Grade help
grade_words = ["grade", "gpa", "score", "marks", "results"]
if any(word in message_lower for word in grade_words):
return self._generate_grade_advice(profile)
# Interest help
interest_words = ["interest", "hobby", "passion", "extracurricular"]
if any(word in message_lower for word in interest_words):
return self._generate_interest_advice(profile)
# Course help
course_words = ["courses", "classes", "transcript", "schedule", "subject"]
if any(word in message_lower for word in course_words):
return self._generate_course_advice(profile)
# Favorites
favorite_words = ["movie", "show", "book", "character", "favorite"]
if any(word in message_lower for word in favorite_words):
return self._generate_favorites_response(profile)
# General help
if "help" in message_lower:
return self._generate_help_response()
# Default response
return ("I'm your personalized teaching assistant. I can help with study tips, "
"grade information, course advice, and more. Try asking about how to "
"study effectively or about your course history.")
def _generate_study_advice(self, profile: Dict) -> str:
"""Generate study advice based on learning style."""
learning_style = profile.get("learning_style", "")
response = ""
if "Visual" in learning_style:
response = ("Based on your visual learning style, I recommend:\n"
"- Creating colorful mind maps or diagrams\n"
"- Using highlighters to color-code your notes\n"
"- Watching educational videos on the topics\n"
"- Creating flashcards with images\n\n")
elif "Auditory" in learning_style:
response = ("Based on your auditory learning style, I recommend:\n"
"- Recording your notes and listening to them\n"
"- Participating in study groups to discuss concepts\n"
"- Explaining the material out loud to yourself\n"
"- Finding podcasts or audio lectures on the topics\n\n")
elif "Reading/Writing" in learning_style:
response = ("Based on your reading/writing learning style, I recommend:\n"
"- Writing detailed summaries in your own words\n"
"- Creating organized outlines of the material\n"
"- Reading additional textbooks or articles\n"
"- Rewriting your notes to reinforce learning\n\n")
elif "Kinesthetic" in learning_style:
response = ("Based on your kinesthetic learning style, I recommend:\n"
"- Creating physical models or demonstrations\n"
"- Using hands-on activities to learn concepts\n"
"- Taking frequent movement breaks while studying\n"
"- Associating information with physical actions\n\n")
else:
response = ("Here are some general study tips:\n"
"- Use the Pomodoro technique (25 min study, 5 min break)\n"
"- Space out your study sessions over time\n"
"- Test yourself with practice questions\n"
"- Teach the material to someone else\n\n")
# Add time management advice
response += ("**Time Management Tips**:\n"
"- Create a study schedule and stick to it\n"
"- Prioritize difficult subjects when you're most alert\n"
"- Break large tasks into smaller, manageable chunks\n"
"- Set specific goals for each study session")
return response
def _generate_grade_advice(self, profile: Dict) -> str:
"""Generate response about grades and GPA."""
gpa = profile.get("transcript", {}).get("student_info", {})
courses = profile.get("transcript", {}).get("course_history", [])
response = (f"Your GPA information:\n"
f"- Unweighted: {gpa.get('unweighted_gpa', 'N/A')}\n"
f"- Weighted: {gpa.get('weighted_gpa', 'N/A')}\n\n")
# Identify any failing grades
weak_subjects = []
for course in courses:
if course.get('grade', '').upper() in ['D', 'F']:
weak_subjects.append(f"{course.get('course_code', '')} {course.get('description', 'Unknown course')}")
if weak_subjects:
response += ("**Areas for Improvement**:\n"
f"You might want to focus on these subjects: {', '.join(weak_subjects)}\n\n")
response += ("**Grade Improvement Strategies**:\n"
"- Meet with your teachers to discuss your performance\n"
"- Identify specific areas where you lost points\n"
"- Create a targeted study plan for weak areas\n"
"- Practice with past exams or sample questions")
return response
def _generate_interest_advice(self, profile: Dict) -> str:
"""Generate response based on student interests."""
interests = profile.get("interests", "")
response = f"I see you're interested in: {interests}\n\n"
response += ("**Suggestions**:\n"
"- Look for clubs or extracurricular activities related to these interests\n"
"- Explore career paths that align with these interests\n"
"- Find online communities or forums about these topics\n"
"- Consider projects or independent study in these areas")
return response
def _generate_course_advice(self, profile: Dict) -> str:
"""Generate response about courses."""
courses = profile.get("transcript", {}).get("course_history", [])
grade_level = profile.get("transcript", {}).get("student_info", {}).get("current_grade", "unknown")
response = "Here's a summary of your courses by year:\n"
courses_by_year = defaultdict(list)
for course in courses:
if course.get("school_year"):
courses_by_year[course["school_year"]].append(course)
for year in sorted(courses_by_year.keys()):
response += f"\n**{year}**:\n"
for course in courses_by_year[year]:
response += f"- {course.get('course_code', '')} {course.get('description', 'Unnamed course')}"
if 'grade' in course:
response += f" (Grade: {course['grade']})"
response += "\n"
response += f"\nAs a grade {grade_level} student, you might want to:\n"
if grade_level in ["9", "10"]:
response += ("- Focus on building strong foundational skills\n"
"- Explore different subjects to find your interests\n"
"- Start thinking about college/career requirements")
elif grade_level in ["11", "12"]:
response += ("- Focus on courses relevant to your college/career goals\n"
"- Consider taking AP or advanced courses if available\n"
"- Ensure you're meeting graduation requirements")
return response
def _generate_favorites_response(self, profile: Dict) -> str:
"""Generate response about favorite items."""
favorites = profile.get("favorites", {})
response = "I see you enjoy:\n"
if favorites.get('movie'):
response += f"- Movie: {favorites['movie']} ({favorites.get('movie_reason', 'no reason provided')})\n"
if favorites.get('show'):
response += f"- TV Show: {favorites['show']} ({favorites.get('show_reason', 'no reason provided')})\n"
if favorites.get('book'):
response += f"- Book: {favorites['book']} ({favorites.get('book_reason', 'no reason provided')})\n"
if favorites.get('character'):
response += f"- Character: {favorites['character']} ({favorites.get('character_reason', 'no reason provided')})\n"
response += "\nThese preferences suggest you might enjoy:\n"
response += "- Similar books/movies in the same genre\n"
response += "- Creative projects related to these stories\n"
response += "- Analyzing themes or characters in your schoolwork"
return response
def _generate_help_response(self) -> str:
"""Generate help response with available commands."""
return ("""I can help with:
- **Study tips**: "How should I study for math?"
- **Grade information**: "What's my GPA?"
- **Course advice**: "Show me my course history"
- **Interest suggestions**: "What clubs match my interests?"
- **General advice**: "How can I improve my grades?"
Try asking about any of these topics!""")
# Initialize teaching assistant
teaching_assistant = TeachingAssistant()
# ========== GRADIO INTERFACE ==========
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
# Session state
session_token = gr.State(value=generate_session_token())
profile_manager.set_session(session_token.value)
# Track completion status for each tab
tab_completed = gr.State({
0: False, # Transcript Upload
1: False, # Learning Style Quiz
2: False, # Personal Questions
3: False, # Save & Review
4: False # AI Assistant
})
# Custom CSS with dark mode support
app.css = """
.gradio-container { max-width: 1200px !important; margin: 0 auto !important; }
.tab-content { padding: 20px !important; border: 1px solid #e0e0e0 !important; border-radius: 8px !important; margin-top: 10px !important; }
.completed-tab { background: #4CAF50 !important; color: white !important; }
.incomplete-tab { background: #E0E0E0 !important; }
.nav-message { padding: 10px; margin: 10px 0; border-radius: 4px; background-color: #ffebee; color: #c62828; }
.file-upload { border: 2px dashed #4CAF50 !important; padding: 20px !important; border-radius: 8px !important; }
.progress-bar { height: 5px; background: linear-gradient(to right, #4CAF50, #8BC34A); margin-bottom: 15px; border-radius: 3px; }
.quiz-question { margin-bottom: 15px; padding: 15px; background: #f5f5f5; border-radius: 5px; }
.quiz-results { margin-top: 20px; padding: 20px; background: #e8f5e9; border-radius: 8px; }
.error-message { color: #d32f2f; background-color: #ffebee; padding: 10px; border-radius: 4px; margin: 10px 0; }
/* Dark mode support */
.dark .tab-content { background-color: #2d2d2d !important; border-color: #444 !important; }
.dark .quiz-question { background-color: #3d3d3d !important; }
.dark .quiz-results { background-color: #2e3d2e !important; }
.dark textarea, .dark input { background-color: #333 !important; color: #eee !important; }
.dark .output-markdown { color: #eee !important; }
.dark .chatbot { background-color: #333 !important; }
.dark .chatbot .user, .dark .chatbot .assistant { color: #eee !important; }
"""
# Header with dark mode toggle
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
# Student Learning Assistant
**Your personalized education companion**
Complete each step to get customized learning recommendations.
""")
with gr.Column(scale=1):
dark_mode = gr.Checkbox(label="Dark Mode", value=False)
# Navigation buttons
with gr.Row():
with gr.Column(scale=1, min_width=100):
step1 = gr.Button("1. Transcript", elem_classes="incomplete-tab")
with gr.Column(scale=1, min_width=100):
step2 = gr.Button("2. Quiz", elem_classes="incomplete-tab", interactive=False)
with gr.Column(scale=1, min_width=100):
step3 = gr.Button("3. Profile", elem_classes="incomplete-tab", interactive=False)
with gr.Column(scale=1, min_width=100):
step4 = gr.Button("4. Review", elem_classes="incomplete-tab", interactive=False)
with gr.Column(scale=1, min_width=100):
step5 = gr.Button("5. Assistant", elem_classes="incomplete-tab", interactive=False)
nav_message = gr.HTML(visible=False)
# Main tabs container - Now VISIBLE
with gr.Tabs(visible=True) as tabs:
# ===== TAB 1: TRANSCRIPT UPLOAD =====
with gr.Tab("Transcript", id=0):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Upload Your Transcript")
with gr.Group(elem_classes="file-upload"):
file_input = gr.File(
label="Drag and drop your transcript here (PDF or Image)",
file_types=ALLOWED_FILE_TYPES,
type="filepath"
)
upload_btn = gr.Button("Analyze Transcript", variant="primary")
file_error = gr.HTML(visible=False)
with gr.Column(scale=2):
transcript_output = gr.Textbox(
label="Analysis Results",
lines=20,
interactive=False
)
transcript_data = gr.State()
def process_transcript(file_obj, current_tab_status):
try:
if not file_obj:
raise ValueError("Please upload a transcript file first.")
output_text, data = parse_transcript(file_obj)
if "Error" in output_text:
return (
output_text,
None,
current_tab_status,
gr.update(),
gr.update(),
gr.update(visible=True, value=f"<div class='error-message'>{output_text}</div>"),
gr.update(visible=False)
)
new_status = current_tab_status.copy()
new_status[0] = True
return (
output_text,
data,
new_status,
gr.update(elem_classes="completed-tab"),
gr.update(interactive=True),
gr.update(visible=False),
gr.update(visible=False)
)
except Exception as e:
error_msg = f"Error processing transcript: {str(e)}"
if "PDF" in str(e):
error_msg += "\n\nTIPS:\n- Try converting to image (screenshot)\n- Ensure text is selectable in PDF\n- Try a different PDF reader"
return (
error_msg,
None,
current_tab_status,
gr.update(),
gr.update(),
gr.update(visible=True, value=f"<div class='error-message'>{error_msg}</div>"),
gr.update(visible=False)
)
upload_btn.click(
process_transcript,
inputs=[file_input, tab_completed],
outputs=[transcript_output, transcript_data, tab_completed, step1, step2, file_error, nav_message]
)
# ===== TAB 2: LEARNING STYLE QUIZ =====
with gr.Tab("Learning Style Quiz", id=1):
with gr.Column():
gr.Markdown("### Step 2: Discover Your Learning Style")
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
quiz_components = []
with gr.Accordion("Quiz Questions", open=True):
for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)):
with gr.Group(elem_classes="quiz-question"):
q = gr.Radio(
options,
label=f"{i+1}. {question}",
show_label=True
)
quiz_components.append(q)
with gr.Row():
quiz_submit = gr.Button("Submit Quiz", variant="primary")
quiz_clear = gr.Button("Clear Answers")
quiz_alert = gr.HTML(visible=False)
learning_output = gr.Markdown(
label="Your Learning Style Results",
visible=False,
elem_classes="quiz-results"
)
# Update progress bar as questions are answered
for component in quiz_components:
component.change(
fn=lambda *answers: {
progress: gr.HTML(
f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>"
)
},
inputs=quiz_components,
outputs=progress
)
def submit_quiz_and_update(*args):
current_tab_status = args[0]
answers = args[1:]
try:
result = learning_style_quiz.evaluate_quiz(*answers)
new_status = current_tab_status.copy()
new_status[1] = True
return (
result,
gr.update(visible=True),
new_status,
gr.update(elem_classes="completed-tab"),
gr.update(interactive=True),
gr.update(value="<div class='alert-box'>Quiz submitted successfully!</div>", visible=True),
gr.update(visible=False)
)
except Exception as e:
return (
f"Error evaluating quiz: {str(e)}",
gr.update(visible=True),
current_tab_status,
gr.update(),
gr.update(),
gr.update(value=f"<div class='error-message'>Error: {str(e)}</div>", visible=True),
gr.update(visible=False)
)
quiz_submit.click(
fn=submit_quiz_and_update,
inputs=[tab_completed] + quiz_components,
outputs=[learning_output, learning_output, tab_completed, step2, step3, quiz_alert, nav_message]
)
quiz_clear.click(
fn=lambda: [None] * len(quiz_components),
outputs=quiz_components
).then(
fn=lambda: gr.HTML("<div class='progress-bar' style='width: 0%'></div>"),
outputs=progress
)
# ===== TAB 3: PERSONAL QUESTIONS =====
with gr.Tab("Personal Profile", id=2):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 3: Tell Us About Yourself")
with gr.Group():
name = gr.Textbox(label="Full Name", placeholder="Your name")
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
interests = gr.Textbox(
label="Your Interests/Hobbies",
placeholder="e.g., Science, Music, Sports, Art..."
)
save_personal_btn = gr.Button("Save Information", variant="primary")
save_confirmation = gr.HTML(visible=False)
with gr.Column(scale=1):
gr.Markdown("### Favorites")
with gr.Group():
movie = gr.Textbox(label="Favorite Movie")
movie_reason = gr.Textbox(label="Why do you like it?", lines=2)
show = gr.Textbox(label="Favorite TV Show")
show_reason = gr.Textbox(label="Why do you like it?", lines=2)
book = gr.Textbox(label="Favorite Book")
book_reason = gr.Textbox(label="Why do you like it?", lines=2)
character = gr.Textbox(label="Favorite Character (from any story)")
character_reason = gr.Textbox(label="Why do you like them?", lines=2)
# Added blog section
with gr.Accordion("Personal Blog (Optional)", open=False):
blog = gr.Textbox(
label="Share your thoughts",
placeholder="Write something about yourself, your goals, or anything you'd like to share...",
lines=5
)
def save_personal_info(name, age, interests, current_tab_status):
try:
name = validate_name(name)
age = validate_age(age)
interests = sanitize_input(interests)
new_status = current_tab_status.copy()
new_status[2] = True
return (
new_status,
gr.update(elem_classes="completed-tab"),
gr.update(interactive=True),
gr.update(value="<div class='alert-box'>Information saved!</div>", visible=True),
gr.update(visible=False)
)
except Exception as e:
return (
current_tab_status,
gr.update(),
gr.update(),
gr.update(visible=False),
gr.update(visible=True, value=f"<div class='error-message'>Error: {str(e)}</div>")
)
save_personal_btn.click(
fn=save_personal_info,
inputs=[name, age, interests, tab_completed],
outputs=[tab_completed, step3, step4, save_confirmation, nav_message]
)
# ===== TAB 4: SAVE & REVIEW =====
with gr.Tab("Save Profile", id=3):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 4: Review & Save Your Profile")
with gr.Group():
load_profile_dropdown = gr.Dropdown(
label="Load Existing Profile",
choices=profile_manager.list_profiles(session_token.value),
visible=False
)
with gr.Row():
load_btn = gr.Button("Load", visible=False)
delete_btn = gr.Button("Delete", variant="stop", visible=False)
save_btn = gr.Button("Save Profile", variant="primary")
clear_btn = gr.Button("Clear Form")
with gr.Column(scale=2):
output_summary = gr.Markdown(
"Your profile summary will appear here after saving.",
label="Profile Summary"
)
def save_profile_and_update(name, age, interests, transcript_data, learning_style,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog,
current_tab_status):
try:
summary = profile_manager.save_profile(
name, age, interests, transcript_data, learning_style,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog
)
new_status = current_tab_status.copy()
new_status[3] = True
return (
summary,
new_status,
gr.update(elem_classes="completed-tab"),
gr.update(interactive=True),
gr.update(visible=False)
)
except Exception as e:
return (
f"Error saving profile: {str(e)}",
current_tab_status,
gr.update(),
gr.update(),
gr.update(visible=True, value=f"<div class='error-message'>Error: {str(e)}</div>")
)
save_btn.click(
fn=save_profile_and_update,
inputs=[
name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog,
tab_completed
],
outputs=[output_summary, tab_completed, step4, step5, nav_message]
).then(
fn=lambda: profile_manager.list_profiles(session_token.value),
outputs=load_profile_dropdown
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=load_btn
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=delete_btn
)
def delete_profile(name, session_token):
if not name:
raise gr.Error("Please select a profile to delete")
try:
profile_path = profile_manager.get_profile_path(name)
if profile_path.exists():
profile_path.unlink()
return "Profile deleted successfully", ""
except Exception as e:
raise gr.Error(f"Error deleting profile: {str(e)}")
delete_btn.click(
fn=delete_profile,
inputs=[load_profile_dropdown, session_token],
outputs=[output_summary, load_profile_dropdown]
).then(
fn=lambda: profile_manager.list_profiles(session_token.value),
outputs=load_profile_dropdown
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=load_btn
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=delete_btn
)
clear_btn.click(
fn=lambda: [gr.update(value="") for _ in range(12)],
outputs=[
name, age, interests,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason,
output_summary
]
)
# ===== TAB 5: AI ASSISTANT =====
with gr.Tab("AI Assistant", id=4):
gr.Markdown("## Your Personalized Learning Assistant")
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
# Create a wrapper function that properly awaits the async function
async def chat_wrapper(message: str, history: List[List[str]]):
response = await teaching_assistant.generate_response(
message,
history,
session_token.value
)
return response
chatbot = gr.ChatInterface(
fn=chat_wrapper,
examples=[
"How should I study for my next math test?",
"What's my current GPA?",
"Show me my course history",
"How can I improve my grades in science?",
"What study methods match my learning style?"
],
title=""
)
# Navigation logic
def navigate_to_tab(tab_index: int, tab_completed_status):
current_tab = tabs.selected
# Allow backward navigation
if tab_index <= current_tab:
return gr.Tabs(selected=tab_index), gr.update(visible=False)
# Check if current tab is completed
if not tab_completed_status.get(current_tab, False):
messages = {
0: "Please complete the transcript analysis first.",
1: "Please complete the learning style quiz first.",
2: "Please fill out your personal information first.",
3: "Please save your profile first."
}
return (
gr.Tabs(selected=current_tab),
gr.update(
value=f"<div class='error-message'>⚠️ {messages.get(current_tab, 'Please complete this step first')}</div>",
visible=True
)
)
return gr.Tabs(selected=tab_index), gr.update(visible=False)
# Connect navigation buttons
step1.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(0), tab_completed],
outputs=[tabs, nav_message]
)
step2.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(1), tab_completed],
outputs=[tabs, nav_message]
)
step3.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(2), tab_completed],
outputs=[tabs, nav_message]
)
step4.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(3), tab_completed],
outputs=[tabs, nav_message]
)
step5.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(4), tab_completed],
outputs=[tabs, nav_message]
)
# Dark mode toggle
def toggle_dark_mode(dark):
return gr.themes.Soft(primary_hue="blue", secondary_hue="gray") if not dark else gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate")
dark_mode.change(
fn=toggle_dark_mode,
inputs=dark_mode,
outputs=None
)
# Load model on startup
app.load(fn=lambda: model_loader.load_model(), outputs=[])
return app
# Create and launch the interface
app = create_interface()
if __name__ == "__main__":
app.launch()
|