|
import os |
|
from transformers import pipeline |
|
from huggingface_hub import HfApi |
|
|
|
|
|
access_token = os.environ.get("HUGGING_FACE_ACCESS_TOKEN") |
|
|
|
|
|
api = HfApi(endpoint="https://huggingface.co") |
|
|
|
|
|
gender_classifier = pipeline('text-classification', model='Dannel/Gender_Classifier', use_auth_token=access_token) |
|
|
|
|
|
def infer_gender(name): |
|
""" |
|
Infiere el g茅nero de una persona a partir de su nombre. |
|
|
|
Args: |
|
name (str): El nombre de la persona. |
|
|
|
Returns: |
|
str: El g茅nero predicho ('Male' o 'Female'). |
|
""" |
|
|
|
prediction = gender_classifier([name])[0] |
|
|
|
return prediction['label'] |
|
|
|
|
|
demo = gr.Interface( |
|
fn=infer_gender, |
|
inputs=gr.Textbox(label="Nombre"), |
|
outputs=gr.Label(label="G茅nero predicho"), |
|
title="Clasificador de G茅nero", |
|
description="Ingresa un nombre para predecir su g茅nero." |
|
) |
|
|
|
|
|
demo.launch(share=True) |
|
|