Smart_LLM / app.py
Daemontatox's picture
Update app.py
3ccf63d verified
raw
history blame
12.7 kB
import os
import re
import time
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer
)
# Configuration Constants
MODEL_ID= "NovaSky-AI/Sky-T1-32B-Flash"
# Understand]: Analyze the question to identify key details and clarify the goal.
# [Plan]: Outline a logical, step-by-step approach to address the question or problem.
# [Reason]: Execute the plan, applying logical reasoning, calculations, or analysis to reach a conclusion. Document each step clearly.
# [Reflect]: Review the reasoning and the final answer to ensure it is accurate, complete, and adheres to the principle of openness.
# [Respond]: Present a well-structured and transparent answer, enriched with supporting details as needed.
# Use these tags as headers in your response to make your thought process easy to follow and aligned with the principle of openness.
DEFAULT_SYSTEM_PROMPT ="""
You are a reasoning assistant specialized in problem-solving, You should think Step by Step.
**Overview:**
When addressing a query, I simulate a structured, multi-layered reasoning process to ensure accuracy, relevance, and clarity. Below is a template of my internal workflow:
---
### 1. **Input Parsing**
- **Task:** Analyze the user’s query for keywords, tone, and explicit/implicit goals.
- *Example Thought:* “The user asked about [specific topic]. Are there ambiguous terms (e.g., ‘best,’ ‘quickly’) that need clarification? Is there an underlying goal (e.g., learning, troubleshooting, creativity)?”
---
### 2. **Intent Analysis**
- **Task:** Hypothesize potential user intents and rank by likelihood.
- *Example Thought:*
- Primary intent: [Most likely goal based on phrasing].
- Secondary intent: [Possible related needs, e.g., deeper context, comparisons, or actionable steps].
---
### 3. **Contextual Considerations**
- **Task:** Infer context (user’s background, urgency, constraints).
- *Example Thought:*
- “Does the user have [technical/non-technical] expertise? Are they time-constrained? Could cultural or situational factors (e.g., academic/professional use) shape the response?”
---
### 4. **Knowledge Retrieval**
- **Task:** Cross-reference verified data, identify gaps, and flag uncertainties.
- *Example Thought:*
- “Source [X] confirms [Y], but [Z] contradicts it. Highlight confidence levels and caveats (e.g., ‘Studies suggest…’ vs. ‘There’s consensus that…’).”
---
### 5. **Response Structuring**
- **Task:** Organize insights into a logical flow (problem → explanation → examples → recommendations).
- *Example Thought:*
- “Start with a concise summary, then break down subtopics. Use analogies like [analogy] for clarity. Include actionable steps if applicable.”
---
### 6. **Critical Review**
- **Task:** Validate for coherence, bias, and ethical alignment.
- *Example Thought:*
- “Does this inadvertently assume [perspective]? Is the language inclusive? Are sources up-to-date and reputable?”
---
### 7. **Output & Invitation**
- **Task:** Deliver the response and prompt refinement.
- *Example Phrasing:*
- “Here’s a step-by-step breakdown based on [key criteria]. Let me know if you’d like to tweak the depth, focus, or examples!”
"""
# UI Configuration
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>"
PLACEHOLDER = "Ask me anything! I'll think through it step by step."
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.message-wrap {
overflow-x: auto;
}
.message-wrap p {
margin-bottom: 1em;
}
.message-wrap pre {
background-color: #f6f8fa;
border-radius: 3px;
padding: 16px;
overflow-x: auto;
}
.message-wrap code {
background-color: rgba(175,184,193,0.2);
border-radius: 3px;
padding: 0.2em 0.4em;
font-family: monospace;
}
.custom-tag {
color: #0066cc;
font-weight: bold;
}
.chat-area {
height: 500px !important;
overflow-y: auto !important;
}
"""
def initialize_model():
"""Initialize the model with appropriate configurations"""
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_compute_dtype=torch.bfloat16,
bnb_8bit_quant_type="nf4",
bnb_8bit_use_double_quant=True
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID , trust_remote_code=True)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="cuda",
# attn_implementation="flash_attention_2",
trust_remote_code=True,
quantization_config=quantization_config
)
return model, tokenizer
def format_text(text):
"""Format text with proper spacing and tag highlighting (but keep tags visible)"""
tag_patterns = [
(r'<Thinking>', '\n<Thinking>\n'),
(r'</Thinking>', '\n</Thinking>\n'),
(r'<Critique>', '\n<Critique>\n'),
(r'</Critique>', '\n</Critique>\n'),
(r'<Revising>', '\n<Revising>\n'),
(r'</Revising>', '\n</Revising>\n'),
(r'<Final>', '\n<Final>\n'),
(r'</Final>', '\n</Final>\n')
]
formatted = text
for pattern, replacement in tag_patterns:
formatted = re.sub(pattern, replacement, formatted)
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
return formatted
def format_chat_history(history):
"""Format chat history for display, keeping tags visible"""
formatted = []
for user_msg, assistant_msg in history:
formatted.append(f"User: {user_msg}")
if assistant_msg:
formatted.append(f"Assistant: {assistant_msg}")
return "\n\n".join(formatted)
def create_examples():
"""Create example queries for the UI"""
return [
"Explain the concept of artificial intelligence.",
"How does photosynthesis work?",
"What are the main causes of climate change?",
"Describe the process of protein synthesis.",
"What are the key features of a democratic government?",
"Explain the theory of relativity.",
"How do vaccines work to prevent diseases?",
"What are the major events of World War II?",
"Describe the structure of a human cell.",
"What is the role of DNA in genetics?"
]
@spaces.GPU(duration=660)
def chat_response(
message: str,
history: list,
chat_display: str,
system_prompt: str,
temperature: float = 0.3,
max_new_tokens: int =4096 ,
top_p: float = 0.1,
top_k: int = 45,
penalty: float = 1.5,
):
"""Generate chat responses, keeping tags visible in the output"""
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer}
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
streamer=streamer,
)
buffer = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
history = history + [[message, ""]]
for new_text in streamer:
buffer += new_text
formatted_buffer = format_text(buffer)
history[-1][1] = formatted_buffer
chat_display = format_chat_history(history)
yield history, chat_display
def process_example(example: str) -> tuple:
"""Process example query and return empty history and updated display"""
return [], f"User: {example}\n\n"
def main():
"""Main function to set up and launch the Gradio interface"""
global model, tokenizer
model, tokenizer = initialize_model()
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
with gr.Row():
with gr.Column():
chat_history = gr.State([])
chat_display = gr.TextArea(
value="",
label="Chat History",
interactive=False,
elem_classes=["chat-area"],
)
message = gr.TextArea(
placeholder=PLACEHOLDER,
label="Your message",
lines=3
)
with gr.Row():
submit = gr.Button("Send")
clear = gr.Button("Clear")
with gr.Accordion("⚙️ Advanced Settings", open=False):
system_prompt = gr.TextArea(
value=DEFAULT_SYSTEM_PROMPT,
label="System Prompt",
lines=5,
)
temperature = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
)
max_tokens = gr.Slider(
minimum=128,
maximum=32000,
step=128,
value=4096,
label="Max Tokens",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.8,
label="Top-p",
)
top_k = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=45,
label="Top-k",
)
penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.5,
label="Repetition Penalty",
)
examples = gr.Examples(
examples=create_examples(),
inputs=[message],
outputs=[chat_history, chat_display],
fn=process_example,
cache_examples=False,
)
# Set up event handlers
submit_click = submit.click(
chat_response,
inputs=[
message,
chat_history,
chat_display,
system_prompt,
temperature,
max_tokens,
top_p,
top_k,
penalty,
],
outputs=[chat_history, chat_display],
show_progress=True,
)
message.submit(
chat_response,
inputs=[
message,
chat_history,
chat_display,
system_prompt,
temperature,
max_tokens,
top_p,
top_k,
penalty,
],
outputs=[chat_history, chat_display],
show_progress=True,
)
clear.click(
lambda: ([], ""),
outputs=[chat_history, chat_display],
show_progress=True,
)
submit_click.then(lambda: "", outputs=message)
message.submit(lambda: "", outputs=message)
return demo
if __name__ == "__main__":
demo = main()
demo.launch()