Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,718 Bytes
9e07bfc 3738ef6 13880c3 3738ef6 51a7d9e 13880c3 51a7d9e edb9e8a 13880c3 51a7d9e 13880c3 f5773a9 e339ee0 e2a3fe7 4ff4f2e c357bf8 890ef89 6ed6285 13880c3 0b72fd3 51a7d9e 3738ef6 51a7d9e 4b74382 13880c3 0b72fd3 51a7d9e 1e18916 13880c3 e339ee0 3ccf63d e339ee0 13880c3 d8a8bf1 e339ee0 13880c3 a6ea901 cdad745 e339ee0 3ccf63d e339ee0 13880c3 3738ef6 13880c3 659ca36 1e18916 ab4f4a6 13880c3 1e18916 0b72fd3 ab4f4a6 0b72fd3 ab4f4a6 0b72fd3 a9a1051 0b72fd3 13880c3 3738ef6 0b72fd3 3738ef6 8b5b0c4 6a337f8 639da23 6ed6285 c03f74a 3738ef6 ab4f4a6 3738ef6 13880c3 51a7d9e 3738ef6 13880c3 3738ef6 13880c3 3738ef6 13880c3 1e18916 13880c3 1e18916 3738ef6 1e18916 13880c3 1e18916 3738ef6 edb9e8a 13880c3 1e18916 3738ef6 030c23d 51a7d9e 13880c3 1e18916 3738ef6 0b72fd3 13880c3 ab4f4a6 3738ef6 ab4f4a6 bc05e4d 0b72fd3 c44cbfe 13880c3 0b72fd3 8b5b0c4 0b72fd3 6a337f8 0b72fd3 245d041 0b72fd3 6ed6285 0b72fd3 c03f74a 0b72fd3 13880c3 0b72fd3 13880c3 0b72fd3 13880c3 3738ef6 51a7d9e 13880c3 3738ef6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os
import re
import time
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer
)
# Configuration Constants
MODEL_ID= "NovaSky-AI/Sky-T1-32B-Flash"
# Understand]: Analyze the question to identify key details and clarify the goal.
# [Plan]: Outline a logical, step-by-step approach to address the question or problem.
# [Reason]: Execute the plan, applying logical reasoning, calculations, or analysis to reach a conclusion. Document each step clearly.
# [Reflect]: Review the reasoning and the final answer to ensure it is accurate, complete, and adheres to the principle of openness.
# [Respond]: Present a well-structured and transparent answer, enriched with supporting details as needed.
# Use these tags as headers in your response to make your thought process easy to follow and aligned with the principle of openness.
DEFAULT_SYSTEM_PROMPT ="""
You are a reasoning assistant specialized in problem-solving, You should think Step by Step.
**Overview:**
When addressing a query, I simulate a structured, multi-layered reasoning process to ensure accuracy, relevance, and clarity. Below is a template of my internal workflow:
---
### 1. **Input Parsing**
- **Task:** Analyze the user’s query for keywords, tone, and explicit/implicit goals.
- *Example Thought:* “The user asked about [specific topic]. Are there ambiguous terms (e.g., ‘best,’ ‘quickly’) that need clarification? Is there an underlying goal (e.g., learning, troubleshooting, creativity)?”
---
### 2. **Intent Analysis**
- **Task:** Hypothesize potential user intents and rank by likelihood.
- *Example Thought:*
- Primary intent: [Most likely goal based on phrasing].
- Secondary intent: [Possible related needs, e.g., deeper context, comparisons, or actionable steps].
---
### 3. **Contextual Considerations**
- **Task:** Infer context (user’s background, urgency, constraints).
- *Example Thought:*
- “Does the user have [technical/non-technical] expertise? Are they time-constrained? Could cultural or situational factors (e.g., academic/professional use) shape the response?”
---
### 4. **Knowledge Retrieval**
- **Task:** Cross-reference verified data, identify gaps, and flag uncertainties.
- *Example Thought:*
- “Source [X] confirms [Y], but [Z] contradicts it. Highlight confidence levels and caveats (e.g., ‘Studies suggest…’ vs. ‘There’s consensus that…’).”
---
### 5. **Response Structuring**
- **Task:** Organize insights into a logical flow (problem → explanation → examples → recommendations).
- *Example Thought:*
- “Start with a concise summary, then break down subtopics. Use analogies like [analogy] for clarity. Include actionable steps if applicable.”
---
### 6. **Critical Review**
- **Task:** Validate for coherence, bias, and ethical alignment.
- *Example Thought:*
- “Does this inadvertently assume [perspective]? Is the language inclusive? Are sources up-to-date and reputable?”
---
### 7. **Output & Invitation**
- **Task:** Deliver the response and prompt refinement.
- *Example Phrasing:*
- “Here’s a step-by-step breakdown based on [key criteria]. Let me know if you’d like to tweak the depth, focus, or examples!”
"""
# UI Configuration
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>"
PLACEHOLDER = "Ask me anything! I'll think through it step by step."
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.message-wrap {
overflow-x: auto;
}
.message-wrap p {
margin-bottom: 1em;
}
.message-wrap pre {
background-color: #f6f8fa;
border-radius: 3px;
padding: 16px;
overflow-x: auto;
}
.message-wrap code {
background-color: rgba(175,184,193,0.2);
border-radius: 3px;
padding: 0.2em 0.4em;
font-family: monospace;
}
.custom-tag {
color: #0066cc;
font-weight: bold;
}
.chat-area {
height: 500px !important;
overflow-y: auto !important;
}
"""
def initialize_model():
"""Initialize the model with appropriate configurations"""
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_compute_dtype=torch.bfloat16,
bnb_8bit_quant_type="nf4",
bnb_8bit_use_double_quant=True
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID , trust_remote_code=True)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="cuda",
# attn_implementation="flash_attention_2",
trust_remote_code=True,
quantization_config=quantization_config
)
return model, tokenizer
def format_text(text):
"""Format text with proper spacing and tag highlighting (but keep tags visible)"""
tag_patterns = [
(r'<Thinking>', '\n<Thinking>\n'),
(r'</Thinking>', '\n</Thinking>\n'),
(r'<Critique>', '\n<Critique>\n'),
(r'</Critique>', '\n</Critique>\n'),
(r'<Revising>', '\n<Revising>\n'),
(r'</Revising>', '\n</Revising>\n'),
(r'<Final>', '\n<Final>\n'),
(r'</Final>', '\n</Final>\n')
]
formatted = text
for pattern, replacement in tag_patterns:
formatted = re.sub(pattern, replacement, formatted)
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
return formatted
def format_chat_history(history):
"""Format chat history for display, keeping tags visible"""
formatted = []
for user_msg, assistant_msg in history:
formatted.append(f"User: {user_msg}")
if assistant_msg:
formatted.append(f"Assistant: {assistant_msg}")
return "\n\n".join(formatted)
def create_examples():
"""Create example queries for the UI"""
return [
"Explain the concept of artificial intelligence.",
"How does photosynthesis work?",
"What are the main causes of climate change?",
"Describe the process of protein synthesis.",
"What are the key features of a democratic government?",
"Explain the theory of relativity.",
"How do vaccines work to prevent diseases?",
"What are the major events of World War II?",
"Describe the structure of a human cell.",
"What is the role of DNA in genetics?"
]
@spaces.GPU(duration=660)
def chat_response(
message: str,
history: list,
chat_display: str,
system_prompt: str,
temperature: float = 0.3,
max_new_tokens: int =4096 ,
top_p: float = 0.1,
top_k: int = 45,
penalty: float = 1.5,
):
"""Generate chat responses, keeping tags visible in the output"""
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer}
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
streamer=streamer,
)
buffer = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
history = history + [[message, ""]]
for new_text in streamer:
buffer += new_text
formatted_buffer = format_text(buffer)
history[-1][1] = formatted_buffer
chat_display = format_chat_history(history)
yield history, chat_display
def process_example(example: str) -> tuple:
"""Process example query and return empty history and updated display"""
return [], f"User: {example}\n\n"
def main():
"""Main function to set up and launch the Gradio interface"""
global model, tokenizer
model, tokenizer = initialize_model()
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
with gr.Row():
with gr.Column():
chat_history = gr.State([])
chat_display = gr.TextArea(
value="",
label="Chat History",
interactive=False,
elem_classes=["chat-area"],
)
message = gr.TextArea(
placeholder=PLACEHOLDER,
label="Your message",
lines=3
)
with gr.Row():
submit = gr.Button("Send")
clear = gr.Button("Clear")
with gr.Accordion("⚙️ Advanced Settings", open=False):
system_prompt = gr.TextArea(
value=DEFAULT_SYSTEM_PROMPT,
label="System Prompt",
lines=5,
)
temperature = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
)
max_tokens = gr.Slider(
minimum=128,
maximum=32000,
step=128,
value=4096,
label="Max Tokens",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.8,
label="Top-p",
)
top_k = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=45,
label="Top-k",
)
penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.5,
label="Repetition Penalty",
)
examples = gr.Examples(
examples=create_examples(),
inputs=[message],
outputs=[chat_history, chat_display],
fn=process_example,
cache_examples=False,
)
# Set up event handlers
submit_click = submit.click(
chat_response,
inputs=[
message,
chat_history,
chat_display,
system_prompt,
temperature,
max_tokens,
top_p,
top_k,
penalty,
],
outputs=[chat_history, chat_display],
show_progress=True,
)
message.submit(
chat_response,
inputs=[
message,
chat_history,
chat_display,
system_prompt,
temperature,
max_tokens,
top_p,
top_k,
penalty,
],
outputs=[chat_history, chat_display],
show_progress=True,
)
clear.click(
lambda: ([], ""),
outputs=[chat_history, chat_display],
show_progress=True,
)
submit_click.then(lambda: "", outputs=message)
message.submit(lambda: "", outputs=message)
return demo
if __name__ == "__main__":
demo = main()
demo.launch() |