Spaces:
Sleeping
Sleeping
| import os | |
| import fitz # PyMuPDF for PDF handling | |
| from transformers import DonutProcessor, VisionEncoderDecoderModel | |
| from PIL import Image | |
| import tempfile | |
| import streamlit as st | |
| def extract_text_with_donut(pdf_path): | |
| """ | |
| Extract text using Hugging Face Donut model for OCR. | |
| :param pdf_path: Path to the input PDF file. | |
| :return: List of extracted text for each page. | |
| """ | |
| # Load the model and processor | |
| processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base") | |
| model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base") | |
| extracted_text = [] | |
| doc = fitz.open(pdf_path) | |
| for page_num in range(len(doc)): | |
| page = doc.load_page(page_num) | |
| pix = page.get_pixmap(dpi=300) # Convert PDF page to high-resolution image | |
| image_path = f"temp_page_{page_num}.png" | |
| pix.save(image_path) | |
| # Perform OCR using Donut | |
| image = Image.open(image_path).convert("RGB") | |
| inputs = processor(images=image, return_tensors="pt") | |
| outputs = model.generate(**inputs) | |
| page_text = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
| extracted_text.append({"page_num": page_num, "text": page_text}) | |
| # Cleanup temporary image | |
| os.remove(image_path) | |
| return extracted_text | |
| def overlay_text_with_fonts(pdf_path, extracted_data, output_pdf_path): | |
| """ | |
| Overlay extracted text onto the original PDF. | |
| :param pdf_path: Path to the input PDF file. | |
| :param extracted_data: Extracted text for each page. | |
| :param output_pdf_path: Path to save the output PDF file. | |
| """ | |
| doc = fitz.open(pdf_path) | |
| for item in extracted_data: | |
| page_num = item["page_num"] | |
| text = item["text"] | |
| page = doc[page_num] | |
| # Add extracted text to the page | |
| y = 50 # Starting position | |
| for line in text.split("\n"): | |
| page.insert_text((50, y), line, fontsize=10, fontname="Helvetica", color=(0, 0, 0)) | |
| y += 12 # Line spacing | |
| doc.save(output_pdf_path) | |
| print(f"PDF saved to: {output_pdf_path}") | |
| def process_pdf(uploaded_pdf, output_pdf_path): | |
| """ | |
| Process the uploaded PDF to extract text using Hugging Face Donut and overlay it. | |
| :param uploaded_pdf: Uploaded PDF file. | |
| :param output_pdf_path: Path to save the output PDF file. | |
| """ | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: | |
| temp_pdf.write(uploaded_pdf.read()) | |
| temp_pdf_path = temp_pdf.name | |
| extracted_data = extract_text_with_donut(temp_pdf_path) | |
| overlay_text_with_fonts(temp_pdf_path, extracted_data, output_pdf_path) | |
| os.remove(temp_pdf_path) | |
| # Streamlit App | |
| def main(): | |
| st.title("Hugging Face OCR Text Extraction Tool") | |
| st.write("Upload a PDF to extract and overlay text using Hugging Face Donut.") | |
| uploaded_file = st.file_uploader("Upload PDF", type=["pdf"]) | |
| if uploaded_file: | |
| output_pdf_path = "converted_output.pdf" | |
| with st.spinner("Processing your PDF..."): | |
| process_pdf(uploaded_file, output_pdf_path) | |
| st.success("PDF processing complete!") | |
| # Provide a download button for the processed PDF | |
| with open(output_pdf_path, "rb") as f: | |
| st.download_button( | |
| label="Download Converted PDF", | |
| data=f, | |
| file_name="converted_output.pdf", | |
| mime="application/pdf" | |
| ) | |
| os.remove(output_pdf_path) | |
| if __name__ == "__main__": | |
| main() | |