Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,22 @@
|
|
1 |
import os
|
2 |
import fitz # PyMuPDF for PDF handling
|
3 |
-
|
4 |
from PIL import Image
|
5 |
import tempfile
|
6 |
import streamlit as st
|
7 |
|
8 |
-
|
|
|
9 |
"""
|
10 |
-
Extract text
|
11 |
:param pdf_path: Path to the input PDF file.
|
12 |
-
:return: List of
|
13 |
"""
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
doc = fitz.open(pdf_path)
|
16 |
|
17 |
for page_num in range(len(doc)):
|
@@ -20,52 +25,40 @@ def extract_text_with_tesseract(pdf_path):
|
|
20 |
image_path = f"temp_page_{page_num}.png"
|
21 |
pix.save(image_path)
|
22 |
|
23 |
-
# Perform OCR using
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
if ocr_result["text"][i].strip(): # Ignore empty text
|
30 |
-
page_data.append({
|
31 |
-
"text": ocr_result["text"][i],
|
32 |
-
"x0": ocr_result["left"][i],
|
33 |
-
"y0": ocr_result["top"][i],
|
34 |
-
"x1": ocr_result["left"][i] + ocr_result["width"][i],
|
35 |
-
"y1": ocr_result["top"][i] + ocr_result["height"][i],
|
36 |
-
"font_size": ocr_result["height"][i]
|
37 |
-
})
|
38 |
-
|
39 |
-
extracted_data.append(page_data)
|
40 |
|
41 |
# Cleanup temporary image
|
42 |
os.remove(image_path)
|
43 |
|
44 |
-
return
|
45 |
|
46 |
|
47 |
def overlay_text_with_fonts(pdf_path, extracted_data, output_pdf_path):
|
48 |
"""
|
49 |
-
Overlay extracted text onto the original PDF
|
50 |
:param pdf_path: Path to the input PDF file.
|
51 |
-
:param extracted_data: Extracted text
|
52 |
:param output_pdf_path: Path to save the output PDF file.
|
53 |
"""
|
54 |
doc = fitz.open(pdf_path)
|
55 |
|
56 |
-
|
|
|
|
|
57 |
|
58 |
-
for page_num, page_data in enumerate(extracted_data):
|
59 |
page = doc[page_num]
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
fontname=default_font,
|
67 |
-
color=(0, 0, 0) # Black text
|
68 |
-
)
|
69 |
|
70 |
doc.save(output_pdf_path)
|
71 |
print(f"PDF saved to: {output_pdf_path}")
|
@@ -73,7 +66,7 @@ def overlay_text_with_fonts(pdf_path, extracted_data, output_pdf_path):
|
|
73 |
|
74 |
def process_pdf(uploaded_pdf, output_pdf_path):
|
75 |
"""
|
76 |
-
Process the uploaded PDF to extract text using
|
77 |
:param uploaded_pdf: Uploaded PDF file.
|
78 |
:param output_pdf_path: Path to save the output PDF file.
|
79 |
"""
|
@@ -81,7 +74,7 @@ def process_pdf(uploaded_pdf, output_pdf_path):
|
|
81 |
temp_pdf.write(uploaded_pdf.read())
|
82 |
temp_pdf_path = temp_pdf.name
|
83 |
|
84 |
-
extracted_data =
|
85 |
overlay_text_with_fonts(temp_pdf_path, extracted_data, output_pdf_path)
|
86 |
|
87 |
os.remove(temp_pdf_path)
|
@@ -89,8 +82,8 @@ def process_pdf(uploaded_pdf, output_pdf_path):
|
|
89 |
|
90 |
# Streamlit App
|
91 |
def main():
|
92 |
-
st.title("
|
93 |
-
st.write("Upload a PDF to extract and overlay text
|
94 |
|
95 |
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])
|
96 |
if uploaded_file:
|
|
|
1 |
import os
|
2 |
import fitz # PyMuPDF for PDF handling
|
3 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
4 |
from PIL import Image
|
5 |
import tempfile
|
6 |
import streamlit as st
|
7 |
|
8 |
+
|
9 |
+
def extract_text_with_donut(pdf_path):
|
10 |
"""
|
11 |
+
Extract text using Hugging Face Donut model for OCR.
|
12 |
:param pdf_path: Path to the input PDF file.
|
13 |
+
:return: List of extracted text for each page.
|
14 |
"""
|
15 |
+
# Load the model and processor
|
16 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
|
17 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base")
|
18 |
+
|
19 |
+
extracted_text = []
|
20 |
doc = fitz.open(pdf_path)
|
21 |
|
22 |
for page_num in range(len(doc)):
|
|
|
25 |
image_path = f"temp_page_{page_num}.png"
|
26 |
pix.save(image_path)
|
27 |
|
28 |
+
# Perform OCR using Donut
|
29 |
+
image = Image.open(image_path).convert("RGB")
|
30 |
+
inputs = processor(images=image, return_tensors="pt")
|
31 |
+
outputs = model.generate(**inputs)
|
32 |
|
33 |
+
page_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
34 |
+
extracted_text.append({"page_num": page_num, "text": page_text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Cleanup temporary image
|
37 |
os.remove(image_path)
|
38 |
|
39 |
+
return extracted_text
|
40 |
|
41 |
|
42 |
def overlay_text_with_fonts(pdf_path, extracted_data, output_pdf_path):
|
43 |
"""
|
44 |
+
Overlay extracted text onto the original PDF.
|
45 |
:param pdf_path: Path to the input PDF file.
|
46 |
+
:param extracted_data: Extracted text for each page.
|
47 |
:param output_pdf_path: Path to save the output PDF file.
|
48 |
"""
|
49 |
doc = fitz.open(pdf_path)
|
50 |
|
51 |
+
for item in extracted_data:
|
52 |
+
page_num = item["page_num"]
|
53 |
+
text = item["text"]
|
54 |
|
|
|
55 |
page = doc[page_num]
|
56 |
|
57 |
+
# Add extracted text to the page
|
58 |
+
y = 50 # Starting position
|
59 |
+
for line in text.split("\n"):
|
60 |
+
page.insert_text((50, y), line, fontsize=10, fontname="Helvetica", color=(0, 0, 0))
|
61 |
+
y += 12 # Line spacing
|
|
|
|
|
|
|
62 |
|
63 |
doc.save(output_pdf_path)
|
64 |
print(f"PDF saved to: {output_pdf_path}")
|
|
|
66 |
|
67 |
def process_pdf(uploaded_pdf, output_pdf_path):
|
68 |
"""
|
69 |
+
Process the uploaded PDF to extract text using Hugging Face Donut and overlay it.
|
70 |
:param uploaded_pdf: Uploaded PDF file.
|
71 |
:param output_pdf_path: Path to save the output PDF file.
|
72 |
"""
|
|
|
74 |
temp_pdf.write(uploaded_pdf.read())
|
75 |
temp_pdf_path = temp_pdf.name
|
76 |
|
77 |
+
extracted_data = extract_text_with_donut(temp_pdf_path)
|
78 |
overlay_text_with_fonts(temp_pdf_path, extracted_data, output_pdf_path)
|
79 |
|
80 |
os.remove(temp_pdf_path)
|
|
|
82 |
|
83 |
# Streamlit App
|
84 |
def main():
|
85 |
+
st.title("Hugging Face OCR Text Extraction Tool")
|
86 |
+
st.write("Upload a PDF to extract and overlay text using Hugging Face Donut.")
|
87 |
|
88 |
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])
|
89 |
if uploaded_file:
|