Spaces:
Running
Running
File size: 3,181 Bytes
4e937f5 da03023 021e3cd da03023 021e3cd ebfa154 021e3cd e308ec0 63850fe 021e3cd 4e937f5 da03023 4e937f5 da03023 fd11aed da03023 4e937f5 e308ec0 ad44100 ed9d3e7 fd11aed f22333a fd11aed f22333a fd11aed ed9d3e7 4e937f5 365ab23 4e937f5 365ab23 4e937f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
import requests
import json
import os
from dotenv import load_dotenv
# 加载.env文件中的环境变量
load_dotenv()
# 从环境变量中读取配置
API_URL = os.getenv("API_URL")
API_TOKEN = os.getenv("API_TOKEN")
# 验证必要的环境变量
if not API_URL or not API_TOKEN:
raise ValueError("请确保设置了环境变量 API_URL 和 API_TOKEN")
print(f"[INFO] starting:")
print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-13:]}")
print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}") # 只显示token的前10位和后10位
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_TOKEN}"
}
data = {
"model": "/data/DMind-1-mini",
"stream": False,
"messages": messages,
"temperature": temperature,
"top_p": top_p,
"top_k": 20,
"min_p": 0.1
}
print(f"[INFO] process user msg...")
print(f"[INFO] sysMsg: {system_message}")
print(f"[INFO] userMsg: {message}")
print(f"[INFO] modelParam: temperature={temperature}, top_p={top_p}")
print(f"[INFO] reqData: {data}")
try:
with requests.post(API_URL, headers=headers, json=data) as r:
if r.status_code != 200:
print(f"[ERROR] API Error: {r.status_code} - {r.text}")
return "Service error"
json_response = r.json()
# print(f"[DEBUG] API Response: {json.dumps(json_response, indent=2)}")
if 'choices' in json_response and len(json_response['choices']) > 0:
response = json_response['choices'][0].get('message', {}).get('content', '')
if response:
return "hello"
return "No response from model"
except Exception as e:
print(f"[ERROR] Request error: {e}")
return "Service error occurred"
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.96,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|