Spaces:
Running
Running
feat: update llm model to api
Browse files
app.py
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -25,19 +27,35 @@ def respond(
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature
|
35 |
-
top_p
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
"""
|
@@ -52,7 +70,7 @@ demo = gr.ChatInterface(
|
|
52 |
gr.Slider(
|
53 |
minimum=0.1,
|
54 |
maximum=1.0,
|
55 |
-
value=0.
|
56 |
step=0.05,
|
57 |
label="Top-p (nucleus sampling)",
|
58 |
),
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
|
5 |
+
API_URL = "https://api.whaleflux.com/whaleflux/v1/model/deployment/enova-service-8fbf8085-2d13-4583/v1/chat/completions"
|
6 |
+
API_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJNVGMwTlRVMk5EVTROaTR4T0dNd01qUXpaVEJsTVRsaVpURmhPV1V5TkdVMk9UUTRabVppTjJNME16RmtaVGt4WkRjM056RmtPR1l4TTJFek1HRmpNek15WW1JMFlUTmpPVEUwIiwiaWF0IjoxNzQ1NTY0NTg2LCJleHAiOi0xLCJvcmdfaWQiOiIxMDAyNzA5NSIsInNjb3BlIjp7InBlcm1pc3Npb24iOm51bGx9LCJ0eXBlIjoiYXBpLXRva2VuIiwiTWFwQ2xhaW1zIjpudWxsfQ.fw6eZmOWr7gBqKd6X5duGao0MOimZ69Fv0oeBVWy0Gk"
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
"""
|
|
|
|
|
11 |
|
12 |
def respond(
|
13 |
message,
|
|
|
27 |
|
28 |
messages.append({"role": "user", "content": message})
|
29 |
|
30 |
+
headers = {
|
31 |
+
"Content-Type": "application/json",
|
32 |
+
"Authorization": f"Bearer {API_TOKEN}"
|
33 |
+
}
|
34 |
|
35 |
+
data = {
|
36 |
+
"model": "/data/DMind-1-mini",
|
37 |
+
"stream": True,
|
38 |
+
"messages": messages,
|
39 |
+
"temperature": temperature,
|
40 |
+
"top_p": top_p,
|
41 |
+
"top_k": 20,
|
42 |
+
"min_p": 0.1
|
43 |
+
}
|
44 |
|
45 |
+
response = ""
|
46 |
+
|
47 |
+
with requests.post(API_URL, headers=headers, json=data, stream=True) as r:
|
48 |
+
for line in r.iter_lines():
|
49 |
+
if line:
|
50 |
+
try:
|
51 |
+
json_response = json.loads(line.decode('utf-8').replace('data: ', ''))
|
52 |
+
if 'choices' in json_response and len(json_response['choices']) > 0:
|
53 |
+
token = json_response['choices'][0].get('delta', {}).get('content', '')
|
54 |
+
if token:
|
55 |
+
response += token
|
56 |
+
yield response
|
57 |
+
except json.JSONDecodeError:
|
58 |
+
continue
|
59 |
|
60 |
|
61 |
"""
|
|
|
70 |
gr.Slider(
|
71 |
minimum=0.1,
|
72 |
maximum=1.0,
|
73 |
+
value=0.96,
|
74 |
step=0.05,
|
75 |
label="Top-p (nucleus sampling)",
|
76 |
),
|